Project description
Visualisation of gene editing
Precise modification of DNA to treat genetic disease constitutes a long-term goal of scientists worldwide. The CRISPR-Cas system is an adaptation of a bacterial defence mechanism and offers the potential to precisely edit any genome. It consists of the Cas9 nuclease and an RNA molecule that specifically binds to the target sequence and guides Cas9 to cleave it. The EU-funded MsgRNA project aims to increase the targeting specificity of the CRISPR-Cas system through a fluorescence-based imaging approach. Moreover, scientists are working towards reducing the degradation of undesired targets, which is a side effect of current systems. The work is expected to advance gene editing and expand its functionality and applications.
Objective
CRISPR/Cas9 has been extensively studied for genome editing, but its therapeutic application has been hampered by off-target effects. Site-specific modification of single guide (sg) RNA in CRISPR system is a potential means to expand the utility of CRISPR-Cas genome editing. To address this, and reduce of synthetic burden of sgRNA we propose a ‘click’ ligation method to synthesize sgRNA where two chemically modified oligonucleotides are joined together using CuAAC chemistry. The resultant artificial linkage is biomimetic, so it should not affect Cas9 activity. This method offers significantly higher DNA-targeting specificity (i.e. less off-target effects) and most importantly provides a cost-effective means to access thousands of synthetic sgRNAs. Imaging in CRISPR-Cas9 system using fluorescence in situ hybridisation (FISH) probes have enabled significant advancements in understanding genomic structure and transcriptional control. We will explore novel approaches to image CRISPR-Cas9 system using fluorophore-quencher pairs. The activation of fluorescence can be performed upon nuclear localisation using RNase H, and upon sgRNA binding to the target DNA. These methods will provide highly fluorescent sgRNAs for live-cell imaging, potentially much brighter compared to other methods. To control CRISPR off-target effects we will also design a light induced DNA damage method where cyanovinylcarbazole nucleoside or psolaren will be incorporated in the DNA-targeting RNA. Therefore, modification of sgRNA for CRISPR system can be used to address the biological limitations of CRISPR and expand its functionality. This will open up many avenues for future development and lead to more application-focused studies on therapeutic gene editing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences medical biotechnology genetic engineering gene therapy
- natural sciences biological sciences genetics DNA
- natural sciences biological sciences genetics RNA
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.