CORDIS - Forschungsergebnisse der EU
CORDIS

Development of Deep-UV Quantitative Microscopy for the Study of Mitochondrial Dysfunction

Projektbeschreibung

Hochaufgelöste markierungsfreie Mikroskopie für bessere Darstellung von Mitochondrien

Bei jedem biologischen Experiment muss kritisch betrachtet werden, inwieweit die Versuchsanordnung, vor allem Probenvorbereitung und Beobachtungsmethoden, die Interpretation der Ergebnisse beeinflussen könnte. Um subzelluläre Komponenten wie Proteine oder Organellen (z. B. Mitochondrien) zu analysieren, wird häufig mit Markern oder Amplifizierungstechniken gearbeitet, um das Signal aus dem „Rauschen“ herauszufiltern. Das Projekt MitoQuant entwickelt ein hochauflösendes und hochspezifisches Bildgebungsystem für lebende Zellen, das die Bildqualität markierungsfreier Präparate verbessern soll. Bei der quantitativen Mikroskop-Technologie wird mit maschinellem Lernen und Autofluoreszenz (natürliche Emission von Licht aus endogenen Proteinen) gearbeitet, um mitochondrienabhängige Prozesse zu analysieren, was künftig die Behandlung Hunderter Krankheiten vereinfachen könnte, die auf mitochondriale Fehlfunktionen zurückgehen.

Ziel

Mitochondria play a vital role in the cellular machinery, hence it is little surprising that their dysfunction has been linked to many diseases, from diabetes to neurodegeneration. However, as many studies on the interplay of organelles and molecular dynamics often employ fluorescence microscopy, a continued worry overshadowing findings and deductions is the possibility that the transfection-induced overexpression of fluorescent proteins skews the obtained results. A recent approach, the gene editor CRISPR-CAS9, which modifies rather than adds DNA sequences, circumvents this issue, but in turn often reduces the available signal levels. To counter low signals and yet offer highest resolution and specificity, MitoQuant aims to image contextual mitochondrial information with label-free superresolution, while simultaneously enhance image quality of specific but sparse fluorescently labelled proteins of interest through recently presented de-noising routines based on machine learning. Therefore, the development of a novel instrument to provide adequate resolution and contrast, matching label-based live-cell superresolution techniques like structured illumination microscopy, is the first main goal of this project. The proposed microscope will work in the deep UV range and employ dedicated optics originally developed for material science to provide high numerical apertures at short wavelengths, thus enabling live-cell imaging in the 100nm range. Concurrently, a neural network will be compiled and trained to enhance signals under low-light conditions and to extract and classify cellular organelles based on their quantitative phase and autofluorescence information. Building on an excellent track record of developing application-tailored microscopes as well as advanced image reconstruction and processing algorithms particularly suited for live-cell superresolution, the researcher strives to start with first live-cell experiments in good time after establishing the technique.

Koordinator

UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Netto-EU-Beitrag
€ 202 158,72
Adresse
HANSINE HANSENS VEG 14
9019 Tromso
Norwegen

Auf der Karte ansehen

Region
Norge Nord-Norge Troms og Finnmark
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 202 158,72