Project description
New methods to measure CO2 emissions in cities
Cities account for more than 70 % of global CO2 emissions. Monitoring is essential to evaluate the success of measures taken to reduce greenhouse gas emissions. The diFUME project will create a methodology for mapping and monitoring the actual urban CO2 flux in the Swiss city of Basel, making use of its unique infrastructure and a decade of in-situ measurements along with satellite observations. It will apply and evaluate independent models to estimate the urban carbon cycle, which includes building emissions, traffic emissions and soil respiration. The ultimate goal is to support sustainable urban planning strategies.
Objective
Monitoring CO2 emissions of urban areas has become a necessity for sustainable urban planning and climate change mitigation. The current urban inventories are based on top-down approaches that use fuel and electricity consumption statistics for determining CO2 emissions. Such approaches present consistency issues, neglect the biogenic components of the urban carbon cycle (i.e. vegetation, soil) and have restricted spatial and temporal resolution. The main goal of diFUME is to provide a robust methodology for mapping and monitoring the actual urban CO2 flux at optimum spatial and temporal scales, meaningful for urban design decisions. diFUME will develop, apply and evaluate independent models, capable to estimate all the different components of the urban carbon cycle (i.e. building emissions, traffic emissions, human metabolism, photosynthetic uptake, plant respiration, soil respiration). An innovative interdisciplinary methodology will be introduced, combining two cutting-edge technology tools, the Eddy Covariance (EC) and the latest advances in Earth Observation (EO). EC provides continuous in-situ measurements of CO2 flux at the local scale. Previous EC applications in urban areas have provided valuable insights on the holistic understanding of the urban CO2 flux according to the source/sink distribution in the highly heterogeneous urban environment. EO offers synoptic and continuous monitoring of large areas, capable of enhanced representation of the urban cover, morphology and function. Combined use of EO and EC can provide enhanced interpretation and modelling capabilities to achieve fine scale mapping and monitoring of urban CO2 flux. diFUME methodology will be developed and applied in the case study of Basel, exploiting the unique infrastructure and long-term urban EC measurements. diFUME methodology can be transferable to any city, providing an independent toolbox for consistent urban CO2 emission monitoring, supporting sustainable urban planning strategies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
4051 Basel
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.