Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Peptide Dynamic Amphiphiles for Gene Therapy and Macromolecular Delivery

Project description

Novel peptide vehicles for macromolecule delivery

Gene therapy has great potential for the treatment of many diseases. Non-viral vectors and cell-penetrating materials are gaining ground as safer alternatives to viral vectors for gene delivery. The key objective of the EU-funded TraffikGene project is to develop peptide vehicles for the delivery of customised cargos. Researchers will functionalise peptide/polymer scaffolds with different aldehyde tails and optimise the technology for the delivery of nucleic acids. Moreover, the TraffikGene system can be employed for the transport of antibodies and in cell targeting strategies offering the opportunity for controlled release of macromolecules.

Objective

The delivery of exogenous nucleic acids and related macromolecules is one of the most encouraging tools for the future of human health. However, the delivery of the required genetic cargo still constitutes an important challenge. Although non-viral vectors are still in their preliminary clinical steps they are rising up as a real alternative for gene therapeutics. Oligopeptides and polymer cell penetrating materials constitute one of the most promising alternatives for the protection, transport and controlled release of different macromolecular cargos. Under the framework of the ERC-Stg_DYNAP we have methodology that employs dynamic covalent bonds to connect peptide/polymer scaffolds with different aldehyde tails (cationic, hydrophobic, glycans, PEGs, etc.). This key synthetic advantage allows the quick identification of different peptide vehicles for customized cargos. The recent interest of important industrial partners in our technology confirms the strong interest and potential impact of our platform. TraffikGene will diversify the potential market applications of this technology and will allow us to reach a higher level of control for the market transference. We will optimize peptide libraries for the delivery of new nucleic acids (i.e. mRNA) in in vitro and in vivo. The potential commercial success will be maximized by diversification of the applications in gene therapy, cytosolic delivery, antibody transport, cell targeting, blood brain barrier crossing, etc. A market analysis will identify industrial needs, market niches, financial requirements and stakeholders for commercialization. The best future IPR strategy will be carefully evaluated and decided (i.e. product licensing, product development, spin-off, etc.). TraffikGene will allow us to identify and solve challenges required to improve, diversify and exploit the strong potential market applications of our discoveries in the field of gene and macromolecular controlled delivery.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC - Proof of Concept Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-PoC

See all projects funded under this call

Host institution

UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
COLEXIO DE SAN XEROME PRAZA DO OBRADOIRO S/N
15782 Santiago De Compostela
Spain

See on map

Region
Noroeste Galicia A Coruña
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 150 000,00

Beneficiaries (1)

My booklet 0 0