Project description
How baby’s brain processes numbers
Neuroscientists have already established that the human preverbal infant brain can master numerical information long before achieving symbolic knowledge of physical reality. Infants can even represent quantities and solve addition or subtraction problems. In fact, humans might be born with these abilities based on core systems allowing us to track few objects and evaluate quantities through different sensory means. However, neuroscientists know little about cognitive abilities based on prefrontal core activation that support number processing, such as mastering of memory or attention – necessary in mental calculation. The EU-funded NumBraInf project aims to study the organisation and role of the prefrontal cognitive abilities in number procession during infancy. The research will deepen existing knowledge about the crucial processes of human learning.
Objective
One of the most critical quests of neuroscientists is the discovery of the origin of human cognition, such as number processing. Previous studies have shown that the ability to process numerical information in adulthood can be traced back to the first months of life. Although the natural number concept is not expressed until childhood it is built upon a nonsymbolic competency (e.g. child A has more toys than child B) that has an evolutionary origin and is available early in life.
The human infant brain is the only known system, which is able to master a natural language and symbolic knowledge that represents the external world. Fascinatingly, infants are able to represent and discriminate quantities, solve addition and subtraction problems, calculate probabilities, and understand ordinality. These abilities rely on two core systems: (1) track a small number of individuals and (2) estimate the numerosity of large sets across different sensory modalities.
However, the role of supportive cognitive abilities in number processing has been overlooked in both behavioral and neuroimaging studies in infants. Studies in adults, and even more in children, frequently reveal that in addition to the above-mentioned magnitude processing ability – understanding the quantities – different cognitive abilities – e.g. working memory, inhibition, sustained attention – are needed for number processing and arithmetic. These cognitive abilities mainly rely on prefrontal activation.
Furthermore, as an index of maturation, myelination in the prefrontal cortex takes place before that in several other brain regions, such as the temporal lobe. Infant studies in other domains have already revealed the involvement of the prefrontal cortex in response to the mother’s voice, and when working memory is elicited. So, in this project, I investigate the role of prefrontal cognitive abilities in number processing in infancy, which might be crucial to explaining human learning.
Fields of science
Keywords
Programme(s)
Funding Scheme
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinator
72074 Tuebingen
Germany