Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

dataFlow: A Data-driven Fluid Flow Solving Platform

Description du projet

L’apprentissage profond pour les simulations de fluides

Au cours des dernières années, l’apprentissage profond et d’autres méthodologies basées sur l’IA ont suscité un vif intérêt en raison de leur application à diverses solutions innovantes. Ces solutions et utilisations vont des simulations dans la construction automobile aux simulations médicales de flux sanguins. Cependant, bien que le marché des technologies et des méthodologies de simulation dépasse les 15 milliards de dollars et que l’on s’attende à une poursuite de sa croissance, la plupart des options actuelles se concentrent sur la résolution de diverses formes d’équations de Navier-Stokes et utilisent donc des solveurs traditionnels. Le projet dataFlow, financé par l’UE, a pour objectif de développer les bases de la commercialisation de la technologie d’apprentissage profond pour les simulations de fluides. À cette fin, il produira le premier solveur d’écoulement commercial faisant appel à l’apprentissage profond.

Objectif

With the recent breakthrough of deep learning methods, we currenty see the advent of employing this methodology in the context of physical simulations. Such simulations are widely used in numerous industrial fields, starting from car and airplane manufacturers, over computer graphics and animations to medical blood flow simulations. The market for computer simulations is currently exceeding 15 billion USD world wide, with rising trends, and 3 billion spent in Europe alone. A significant fraction of these simulations focuses purely on solving various forms of the Navier-Stokes equations. While right now virtually all of these simulations use traditional solvers, we estimate than only a few years from now there will be a significant fraction of deep learning powered solvers.

Thus, we are at the right point in time to lay the foundations for commercializing the technology of deep learning for fluid simulations. The goal of this PoC project is to develop a first commercial flow solver based on deep learning that can predict fluid flow solutions almost instantly using a pre-trained model. This project will enable the team of Prof. Thuerey to mature the algorithms developed as part of the ERC Starting Grant \realflow, and turn them into the basis of a marketable product. The initial models will be thoroughly tested and validated, in order to satisfy industrial requirements for reliability and accuracy. In addition, this PoC aims for establishing a platform for flow data collection, interface standards, and trained models. This platform will be developed in conjunction to the deep-learning powered flow solving application, and provide research connections and publicity in parallel to it.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-POC - Proof of Concept Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2018-PoC

Voir tous les projets financés au titre de cet appel

Institution d’accueil

TECHNISCHE UNIVERSITAET MUENCHEN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 149 500,00
Adresse
Arcisstrasse 21
80333 Muenchen
Allemagne

Voir sur la carte

Région
Bayern Oberbayern München, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 149 500,00

Bénéficiaires (1)

Mon livret 0 0