Project description
Neural networks aid plate tectonics modelling
The constraints of the Earth’s lithosphere net rotation with respect to the underlying mantle cannot be determined from oceanic crust, as it is destroyed by plate tectonics. On the other hand, plate tectonics have a self-organising and statistically predictable nature that can be taught to neural networks. The TEMPO project will produce estimates for net rotation by training networks to use current data on the Earth, synthetic data, and the rules of physics. They will thus generate proposals of tectonic motion and mantle convection that will be tested against geological data, contributing to further research and the modelling of plate tectonics.
Objective
Plate tectonics processes continuously destroy oceanic crust, which contain the most reliable record of plate motion. There is therefore little data to constrain net rotation of the lithosphere with respect to the deep mantle, constraints on which are required to produce accurate reference frames for plate motion, The location of intra-oceanic plate boundaries and bathymetry in the geological past are also lost. I will use state-of-the-art numerical convection simulations combined with state-of-the-art machine learning techniques to put constraints on both net rotation and the location of plate boundaries with uncertainty estimates. This is possible due to the self-organising and statistically predictable nature of plate tectonics. I will develop one set of neural networks to make inferences for net rotation with uncertainties given observation of continent positions and movement. The networks will take both synthetic and real geological observations as training inputs and produce estimates for net rotation. They will be thoroughly tested using synthetic data and benchmarked using present-day Earth data, thereby testing both the networks and the physics behind the convection simulations. The networks will then be applied to the geological past. A second set of networks will treat the lack of information on oceanic plate boundaries as an image completion problem to fill the gaps in geological data. They will be trained to produce proposals for the location and type of oceanic plate boundaries that are consistent with the physics behind tectonic motion and mantle convection. The networks learn about the physics from the database of convection simulations. These proposals can be assessed against geological and palaeo-oceanographic data, provide suggestions for alternative solutions, give an indication of uncertainties and guide future data collection and modelling work.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences databases
- natural sciences earth and related environmental sciences geology seismology plate tectonics
- natural sciences computer and information sciences artificial intelligence machine learning
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75230 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.