Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Combining Tectonics and Machine Learning to Constrain Plate Reconstruction Models Through Time

Description du projet

Les réseaux de neurones facilitent la modélisation de la tectonique des plaques

Les contraintes de la rotation nette de la lithosphère terrestre par rapport au manteau sous-jacent ne peuvent pas être déterminées à partir de la croûte océanique, car elle est détruite par la tectonique des plaques. D’autre part, la tectonique des plaques a une nature auto-organisatrice et statistiquement prévisible qui peut être enseignée aux réseaux de neurones. Le projet TEMPO produira des estimations de la rotation nette des réseaux de formation pour utiliser les données actuelles sur la Terre, les données synthétiques et les règles de la physique. Il générera ainsi des propositions de mouvement tectonique et de convection du manteau qui seront testées sur des données géologiques, contribuant ainsi à la poursuite des recherches et à la modélisation de la tectonique des plaques.

Objectif

Plate tectonics processes continuously destroy oceanic crust, which contain the most reliable record of plate motion. There is therefore little data to constrain net rotation of the lithosphere with respect to the deep mantle, constraints on which are required to produce accurate reference frames for plate motion, The location of intra-oceanic plate boundaries and bathymetry in the geological past are also lost. I will use state-of-the-art numerical convection simulations combined with state-of-the-art machine learning techniques to put constraints on both net rotation and the location of plate boundaries with uncertainty estimates. This is possible due to the self-organising and statistically predictable nature of plate tectonics. I will develop one set of neural networks to make inferences for net rotation with uncertainties given observation of continent positions and movement. The networks will take both synthetic and real geological observations as training inputs and produce estimates for net rotation. They will be thoroughly tested using synthetic data and benchmarked using present-day Earth data, thereby testing both the networks and the physics behind the convection simulations. The networks will then be applied to the geological past. A second set of networks will treat the lack of information on oceanic plate boundaries as an image completion problem to fill the gaps in geological data. They will be trained to produce proposals for the location and type of oceanic plate boundaries that are consistent with the physics behind tectonic motion and mantle convection. The networks learn about the physics from the database of convection simulations. These proposals can be assessed against geological and palaeo-oceanographic data, provide suggestions for alternative solutions, give an indication of uncertainties and guide future data collection and modelling work.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF-EF-ST - Standard EF

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2018

Voir tous les projets financés au titre de cet appel

Coordinateur

ECOLE NORMALE SUPERIEURE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 196 707,84
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 196 707,84
Mon livret 0 0