Skip to main content

Ultra-high field imaging of perceptual learning and human brain plasticity


Learning and experience shape key cognitive functions of the adult human brain and support our ability to interact in complex and dynamic environments. Yet, the brain mechanisms that support our ability to learn from cluttered and inherently ambiguous sensory information and improve our perceptual decisions with training remain largely unknown. My proposal aims to investigate: (i) the neural basis of perceptual learning in the human visual cortex (ii) the neural computations that underlie perceptual learning and (iii) the brain connectivity (i.e. how different brain areas work together) that supports behavioural improvement due to training. To achieve this, I will combine behavioural paradigms measuring perceptual learning, ultra high-field 7T imaging of brain activations at the finer scale of laminar layers (i.e. across cortical depth) and state-of-the-art computational modelling. This integrated multidisciplinary approach will contribute significantly to our knowledge of how the brain optimises its capacity for adaptive behaviour through learning and experience. Further the proposed work has potential practical implications for the design of education and rehabilitation training programmes in life-long development and disease. Finally, this interdisciplinary research experience boosted by collaborations with industrial partners will benefit greatly my career development to an independent researcher in the field of computational cognitive neuroscience.

Field of science

  • /natural sciences/biological sciences/neurobiology/neuroscience/cognitive neuroscience

Call for proposal

See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF


Trinity Lane The Old Schools
CB2 1TN Cambridge
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 212 933,76