Project description
Shining light on perceptual learning
Experience enhances the way we sense the world around us through a process known as perceptual learning. However, the implicated brain mechanisms remain largely unknown. The key objective of the EU-funded Laminar-PL project is to study the neural basis of perceptual learning with emphasis on the computations and brain networks implicated in the process. Using imaging and computational modelling, scientists will provide important knowledge on how the brain uses learning and experience to adapt and improve our behaviour. Apart from scientific impact, project results will contribute to the design of education and rehabilitation training programmes.
Objective
Learning and experience shape key cognitive functions of the adult human brain and support our ability to interact in complex and dynamic environments. Yet, the brain mechanisms that support our ability to learn from cluttered and inherently ambiguous sensory information and improve our perceptual decisions with training remain largely unknown. My proposal aims to investigate: (i) the neural basis of perceptual learning in the human visual cortex (ii) the neural computations that underlie perceptual learning and (iii) the brain connectivity (i.e. how different brain areas work together) that supports behavioural improvement due to training. To achieve this, I will combine behavioural paradigms measuring perceptual learning, ultra high-field 7T imaging of brain activations at the finer scale of laminar layers (i.e. across cortical depth) and state-of-the-art computational modelling. This integrated multidisciplinary approach will contribute significantly to our knowledge of how the brain optimises its capacity for adaptive behaviour through learning and experience. Further the proposed work has potential practical implications for the design of education and rehabilitation training programmes in life-long development and disease. Finally, this interdisciplinary research experience boosted by collaborations with industrial partners will benefit greatly my career development to an independent researcher in the field of computational cognitive neuroscience.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology cognitive neuroscience
- medical and health sciences clinical medicine physiotherapy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.