Descripción del proyecto
Simulación del hacinamiento macromolecular en las células
Se cree que el hacinamiento macromolecular en las células afecta a la función de las proteínas al modular su estabilidad y su dinámica. Sin embargo, el estudio de este fenómeno a nivel experimental en las células ha demostrado ser todo un reto. El proyecto CROWDY, financiado con fondos europeos, se propone simular el hacinamiento macromolecular a través de un marco intrincado que tiene en cuenta la naturaleza compleja de las proteínas y su presencia en distintos entornos celulares. Además, los científicos investigarán los efectos del hacinamiento cerca de las membranas celulares. En conjunto, el proyecto mejorará nuestra comprensión de la función proteica «in vivo» en enfermedades como la esclerosis lateral amiotrófica.
Objetivo
In living cells, proteins operate in an extremely crowded environment, which has a substantial impact on their structural and dynamical properties. Taking into account the effects of macromolecular crowding is thus imperative for a full understanding of protein function in vivo. However, despite a growing interest in the characterization of in-cell crowding, its net effect remains only partially understood as experimental studies addressing such phenomena in the cytoplasm are very challenging. In this project, we aim to examine the effect of macromolecular crowding on protein mobility and stability at the microscopic resolution. To this end, we will deploy a novel multi-scale simulation approach developed in the host laboratory. This multi-scale framework combines a detailed description of proteins with an efficient lattice-based model of solvent hydrodynamics. In the course of the project, we will consider systems of progressive complexity, ranging from crowded binary protein suspensions through a model of a bacterial cytoplasm and a lipid vesicle forming a biological nanoreactor. Our computational studies will be performed in close contact with two top-level experimental groups active in the field. We will pay particular attention to the behavior of superoxide dismutase 1, a protein involved in amyotrophic lateral sclerosis. Our multi-scale molecular simulations will shed light on how protein dynamics and stability are locally affected by the heterogeneity of the cellular environment. Moreover, we will investigate how crowding is modulated by the presence of membrane surfaces. The simulations will allow us to clarify the origins of crowding effects at an atomistic level, which will provide a vital support for the microscopic interpretation of experimental data. Thus, our project will offer unprecedented insights into the structure and dynamics of the crowded environment inside living cells.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias naturalesciencias biológicasbioquímicabiomoléculasproteínas
- ciencias naturalesciencias biológicasbioquímicabiomoléculaslípidos
- ciencias naturalesinformática y ciencias de la informaciónciencias de la computaciónmultifísica
- ciencias médicas y de la saludmedicina básicaneurologíaesclerosis lateral amiotrófica
Para utilizar esta función, debe iniciar sesión o registrarse
Programa(s)
Régimen de financiación
MSCA-IF-EF-ST - Standard EFCoordinador
75794 Paris
Francia