Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Development of an in silico model for prediction of in vivo human bone fracture healing using micro-finite element analysis

Descripción del proyecto

Un modelo para predecir la curación de los huesos

En lo que respecta a las fracturas óseas, las herramientas de evaluación existentes carecen de la resolución necesaria para identificar y aislar los puntos de fractura iniciales, sobre todo si estos están situados en la parte distal del hueso conocida como metáfisis. El objetivo del proyecto financiado con fondos europeos HealinguFE es desarrollar una herramienta para identificar tales microfracturas y predecir cómo evolucionará su curación. Mediante el uso de datos de tomografías computerizadas periféricas de alta resolución de pacientes con fracturas de muñeca, los científicos desarrollarán un modelo «in silico» capaz de detectar cambios estructurales en el hueso. La herramienta generada profundizará en el conocimiento existente sobre los mecanismos subyacentes a la curación de los huesos trabeculares y alimentará la investigación futura hacia intervenciones novedosas.

Objetivo

Current knowledge of fracture healing is based on experimental animal studies of diaphyseal bone, despite 20% of fractures occurring in the metaphysis of the distal forearm. Moreover, current fracture healing assessment tools lack the resolution to identify and isolate the initial fracture site in cases involving a crushing fracture.

The objectives of this project are to (1) develop a micro-finite element (μFE) model for fracture site identification, (2) develop an in silico model for human bone fracture healing capable of tracking local microstructural changes, and (3) test the predictive power of the in silico model using clinical data. μFE models will be generated from high-resolution peripheral computed tomography (HRpQCT) data of the distal radius from wrist fracture patients. The μFE models will be generated from HRpQCT data collected at the early stages of fracture healing and compared to remodelling maps in order to determine if μFE models can be used to isolate the site of the initial fracture. Adaptations will be made to an existing in silico model based on the findings of the μFE analysis. The resulting in silico model will be applied to clinical HRpQCT data to predict endpoint microstructural changes as well as patterns in fracture healing and remodelling. The predictive power of this in silico model will be determined by comparing the simulation results to observed behavior in vivo.

The proposed project merges recent advances in bone mechanobiology, μFE simulations, and medical imaging to develop novel image analysis and registration methods as well as a tool for predicting if, when, and where fracture healing will occur. The proposed work will provide insights into the local behavior of trabecular bone fracture healing and help the fellow achieve professional maturity. Further, the in silico model has the potential to change the landscape of fracture healing research, particularly in areas of preclinical testing and personalized medicine.

Coordinador

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Aportación neta de la UEn
€ 191 149,44
Dirección
Raemistrasse 101
8092 Zuerich
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Zürich Zürich
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 191 149,44