Description du projet DEENESFRITPL Des routines classiques et quantiques s’associent pour des réseaux quantiques sécurisés L’informatique quantique et les protocoles de communication quantiques portent en eux la promesse d’une amélioration considérable des capacités de calcul et de la transmission sécurisée des données et des informations. En cette époque d’interconnexion sans cesse croissante et de menaces liées à la cybersécurité, jeter les bases de protocoles de communication quantique sûrs et fiables constitue un défi de plus en plus pressant. Le projet IPQNet, financé par l’UE, étudiera les protocoles permettant de traiter de manière réaliste des informations sur un réseau quantique. L’accent sera mis sur la possibilité de combiner des routines classiques et quantiques dans le cadre de protocoles plus larges pour un calcul multipartite modulaire et sécurisé. Afficher les objectifs du projet Masquer les objectifs du projet Objectif We are now at a crucial point in building a next generation of quantum networks that will completely change the way we communicate. The discovery of quantum physics has been revolutionary in the way scientists understand the fundamental laws of nature, but we are now approaching an era where this will have an impact on society as a whole. We are already living in an interconnected world and are continuously dealing with issues of security and protection of our private data. Quantum technologies will therefore become more and more relevant due to their potential for improved security and faster computation, especially since the experimental state-of-affairs has reached the point of real communication scenarios. This research project will examine how to process information on a quantum network, from theory to experiment. This will be achieved by exploring composability and modular synthesis of quantum and classical routines as parts of larger protocols for secure multiparty computation. To succeed in this modular view, we need to (i) examine and verify the quantum resources (modules) and (ii) address the routing of information and construction of resources (connecting modules). Only after going through these steps can we return to the end-term goal of the project, which is to give novel protocols that can securely, and realistically be implemented in the near future. To this end, I will work closely with experimental groups and the industry, in order to implement the theoretical protocols and achieve a global perspective on how to process information in future quantum networks. Champ scientifique sciences naturellessciences physiquesphysique quantiquesciences naturellesinformatique et science de l'informationscience des donnéestraitement des donnéessciences socialesdroit Mots‑clés Quantum Communication Quantum Cryptography Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Thème(s) MSCA-IF-2018 - Individual Fellowships Appel à propositions H2020-MSCA-IF-2018 Voir d’autres projets de cet appel Régime de financement MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinateur FREIE UNIVERSITAET BERLIN Contribution nette de l'UE € 162 806,40 Adresse Kaiserswerther strasse 16-18 14195 Berlin Allemagne Voir sur la carte Région Berlin Berlin Berlin Type d’activité Higher or Secondary Education Establishments Liens Contacter l’organisation Opens in new window Site web Opens in new window Participation aux programmes de R&I de l'UE Opens in new window Réseau de collaboration HORIZON Opens in new window Autres sources de financement € 0,00