Skip to main content

Gold-Functionalized Devices and Engineered Nanoparticles: Bioorthogonal Tools for Unprecedented Biomedical Applications


"Despite recent advances in cancer therapy, many challenges remain to reduce the systemic adverse effects of antineoplastic therapeutics. A major goal in the field is to make nanomedical devices that could bypass the metabolic machinery of cells and perform tasks that are not possible with biological entities, such as the manufacture of bioactive molecules at specific locations in a continuous, atomically precise manner. The use of metallic nanoparticles (NPs) as biocompatible catalysts provides the opportunity to carry out abiotic catalysis inside cancer cells or tissues. Such bioorthogonal reactivity opens up new unprecedented ways of mediating artificial transformations in complex biological systems.
Solid supported Au-NPs have recently demonstrated a novel, very promising role as heterogeneous catalysts able to generate bioactive compounds in biological environments. Herein I propose an innovative approach to develop catalytically- active Au-NPs immobilized within implants or ""protected"" under self-assembling monolayers to enable the activation of systemically-administered bioactive precursors at specific locations via novel Au-mediated deprotection chemistry. To confirm the in vivo functional capabilities of the devices, I will test the capacity of the novel devices to activate dyes and neuromodulators in the brain of zebrafish. This highly innovative multidisciplinary approach could offer a unique and safe method to release bioactive molecules in exact anatomical locations for the treatment of localized disorders including cancer or chronic pain and, in doing so, promote Scientific Excellence in Europe. As the recipient of the advanced training required to perform such a novel programme of research and developer of such tools, at the end of this fellowship I will reach a privileged position for establishing myself as an independent researcher and starting cross-disciplinary collaborations with academics and Pharma across Europe."

Field of science

  • /medical and health sciences/clinical medicine/oncology/cancer
  • /medical and health sciences/medical biotechnology/medical bioproducts/implants

Call for proposal

See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF


Old College, South Bridge
EH8 9YL Edinburgh
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 212 933,76