Project description
A DNA-based molecular printer
DNA nanotechnology takes DNA – the molecule that stores genetic information – out of its biological context and uses it to assemble structural motifs. DNA nanostructures have numerous applications, for example in diagnostics, biophysics and drug delivery. The EU-funded DNAMAKER project will design wireframe DNA nanostructures and study their assembly. The ultimate goal is to generate a molecular printer that will fold DNA building blocks like origami to produce complex 3D scaffolds.
Objective
In the last decades, DNA nanotechnology has been established as a robust method for the production of static, large two- and three-dimensional structures as well as dynamic systems based on the interaction of multiple small strands through strand displacement. In the proposed project, Dr. Erik Benson will join Professor Turberfield’s group to develop the first demonstration of atomically precise manufacturing based on DNA nanotechnology. In his Ph.D. studies, Erik developed methods for the design of wireframe DNA nanostructures and used several experimental techniques to study their assembly. He will combine these skills with Professor Turberfield’s expertise in DNA nanomachines and dynamic DNA toehold systems to develop a first-generation molecular printer. The printer will be constructed by DNA origami, and consist of a guide rail that host a sliding write head whose movements are externally controlled by the introduction of DNA strands. The addition of activator strands will trigger a DNA hybridization catalyst placed at the tip of the write head, causing it to modify the target surface at the precisely determined positions. The principles developed in this project can be expanded into two and three dimensions by the connection of multiple linear motors. The development of robust, externally controlled linear motion at the nanoscale can also find application in other fields including nano-manipulation, biophysics, and controlled catalysis.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- engineering and technology nanotechnology
- natural sciences chemical sciences catalysis
- natural sciences biological sciences biophysics
- engineering and technology mechanical engineering manufacturing engineering additive manufacturing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.