Projektbeschreibung
Ansatz für maschinelles Lernen zur Bestimmung der Regeln für die zelluläre Transdifferenzierung
Die Zellidentität bestimmt sich je nach Zelltyp durch die spezifische Expression von Transkriptionsfaktoren (TF), während die epigenetische Landschaft der Zelle durch epigenetische Regulatorproteine (ER) erhalten wird. Immer mehr wissenschaftliche Beweise legen nahe, dass TF und ER bei der Schaffung des Spektrums verschiedener Zelltypen und Zellzustände im menschlichen Körper zusammenwirken. Das EU-finanzierte Projekt SingleCellAI entwickelt einen Ansatz mit maschinellem Lernen für die In-silico-Prognose von TF/ER-Cocktails, die jeden Zelltyp in beliebige andere Zelltypen umprogrammieren können, um einen Algorithmus für die zelluläre Transdifferenzierung zu schaffen. Im Rahmen der Studie wird ein Modell für maschinelles Lernen an CRISPR-Einzelzellsequenzierungs-Datensätzen im großen Maßstab trainiert. Der datengestützte Ansatz wird im Kontext des menschlichen hämatopoetischen Systems experimentell validiert.
Ziel
Cellular identity is controlled by cell type specific expression of transcription factors (TFs), and it is reflected in the cell’s epigenetic landscape maintained by epigenetic regulator proteins (ERs). Functional dissection of cellular identity has focused mainly on a small number of lineage-defining master regulators, yet there is increasing evidence that multiple TFs and ERs work together to establish and retain the vast number of different cell types and cell states in the human body. For a more quantitative understanding of cellular identity, and of the complexities of its regulation, I propose to develop a machine-learning approach for in silico prediction of TF/ER cocktails that can transdifferentiate any human cell type into any other cell type, thus defining an operational rulebook of cellular transdifferentiation. To this end, I will train a machine-learning model called generative adversarial networks (GANs) on large-scale CRISPR single-cell sequencing (CROP-seq) datasets generated in the host lab. Exploiting unique features of the deep-learning generative approach, the resulting model will be able to generalize the learned genetic perturbations across cell types in silico. I will experimentally validate several of these predicted TF/ER transdifferentiation cocktails in the context of the human hematopoietic system. Importantly, the proposed approach is hypothesis-free and data-driven, exploiting recent advances in machine learning to infer fundamental aspects of the regulation of cellular identity from high-throughput functional CRISPR single-cell sequencing data.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Biowissenschaften Biochemie Biomoleküle Proteine
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz generative künstliche Intelligenz
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz maschinelles Lernen Deep Learning
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF-EF-ST - Standard EF
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-IF-2018
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
1090 Wien
Österreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.