Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Natural selection during the recurrent evolution of a major social trait

Project description

Observing ants to understand evolution mechanisms

Ants offer unique opportunities for evolutionary biology research. They appear as the ideal case study for understanding which genes are involved in social evolution and which trade-offs underpin changes in social organisation. The ancestral social organisation evolved ~140 million years ago including a single queen and her highly related offspring. Through at least 24 convergent evolutionary transitions derived the current form of social organisation with multiple reproductive queens per colony. The EU-funded EvolvAnt project will examine the mechanisms and costs involved in the evolution of the complex social phenotype of the ants. Through comparisons between different social systems, the project aims to identify potential genetic switches in complex novel phenotype evolution.

Objective

A major question in evolutionary biology is understanding how complex novel phenotypes evolve. The 20,000 species of ants provide a unique framework to understand which genes are involved in social evolution and which tradeoffs underpin changes in social organization. Ants are characterized by a remarkable division of labor whereby individuals from specialized castes reproduce (queens, males) while others (workers) build and defend the nest, rear brood and forage for food. The ancestral social organization which evolved ~140 million years ago included a single queen and her highly related offspring. However, there have been at least 24 convergent evolutionary transitions from this ancestral social form to a derived form of social organization with multiple reproductive queens per colony. Importantly, differences in queen number are associated with major life history differences including dispersal strategy, intracolony relatedness, pathogen load, territoriality, intra- and inter-species competitiveness and ecological niche. These cases offer comparisons which can be used to identify potential genetic switches between different social systems. Our proposal will build extensively on the massive natural replication these large numbers of convergent occurrences provide. Are any genes or pathways consistently under different selection pressure after a species has transitioned to exclusively multiple-queen colonies? Does the derived form of social organization have additional effects on genome evolution such as reducing the efficacy of selection? We will address such questions using a strong phylogenomic framework encompassing 40 species and 15 convergent transitions. Our results will have major implications on our understanding of the mechanisms and costs involved in the evolution of this complex social phenotype.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

QUEEN MARY UNIVERSITY OF LONDON
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 212 933,76
Address
327 MILE END ROAD
E1 4NS LONDON
United Kingdom

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 212 933,76
My booklet 0 0