Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Enhancing Self-healing Properties in Polymer Materials through Cooperative Supramolecular Interactions

Project description

Better self-healing polymers that can rapidly recover from damage

Synthetic materials that can self-heal either autonomously or in response to an external stimulus can find use in anything from 3D applications and biocompatible body parts to spacecraft. Among the most common types of self-healing materials are supramolecular polymers. In such structures, the polymer chains are endowed with chemical functions that can associate selectively through reversible and dynamic noncovalent interactions. Funded by the Marie Skłodowska-Curie Actions programme, the CoopHeal project will address key problems that hinder commercialisation of self-healing polymers. Researchers will synthesise polymers that combine supramolecular motifs that can strongly bind through multiple and cooperative noncovalent interactions with polymer chains that are flexible enough to facilitate recombination after damage.

Objective

The use of specific non-covalent interactions between molecular assemblies constitutes a general strategy to design a large variety of sophisticated materials. Functional supramolecular polymer materials have attracted the attention of scientists because of their multiple potential applications and their attractive improved properties, such as easy processing and recyclability. In this context, the main objective in CoopHeal is to introduce cooperative all-or-nothing interactions in supramolecular polymers. We will combine dinucleoside motifs able to strongly bind through multiple noncovalent interactions, with telechelic polymer chains that are flexible enough to facilitate recombination after damage. Our target material would be a thermoplastic polymer with optimal mechanical properties for easy processing and applied purposes, and with outstanding stimuli-responsive self-healing ability. The platform opens interesting opportunities for both the fundamental exploration of structure-property relationships and the design of technologically useful and economically viable materials. CoopHeal introduces fundamental challenges and unprecedented approaches in chemical self-assembly and constitutes the best research scenario for the MSC candidate, Dr. Anselmo del Prado Abellán, to learn from different fields across physical and polymer sciences and others to further develop his scientific career. The host Nanostructured Molecular Systems and Materials group at the Universidad Autónoma de Madrid (UAM), directed by Prof. David González-Rodríguez (DGR), is an active, emergent group, with a strong background in the topics of the proposal, and funded, among others, by ERC-granted projects.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

UNIVERSIDAD AUTONOMA DE MADRID
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 160 932,48
Address
CALLE EINSTEIN 3 CIUDAD UNIV CANTOBLANCO RECTORADO
28049 MADRID
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 160 932,48
My booklet 0 0