Descripción del proyecto
Una innovación pionera para las comunicaciones ópticas inalámbricas ponibles
La aparición de tecnologías electrónicas avanzadas ponibles aporta nuevas posibilidades para las comunicaciones ópticas inalámbricas (OWC, por sus siglas en inglés). La tecnología ponible ofrece dispositivos innovadores para los usuarios finales y proporciona una amplia gama de información y servicios. Hoy día, la ropa, los materiales y los dispositivos de pequeño tamaño, así como la piel humana, se consideran portadores potenciales de aplicaciones multifuncionales. El objetivo del proyecto financiado con fondos europeos Light UP es desarrollar una innovación pionera en OWC ponible. Desarrollará una nueva categoría de fotodetectores ultrafinos y resilientes cuyo tiempo de respuesta previsto es de unas pocas decenas de picosegundos. La innovación se basa en la materialización del «ancho del pozo cuántico» en materiales atómicamente finos de alto nivel, diseñados para este fin, para adquirir propiedades ópticas, electrónicas y físicas superiores.
Objetivo
From beacon fires in early civilizations to emerging light networked wireless communication in modern society, optical wireless communication technologies (OWC) continues to play a pivotal role for mankind. The emergence of flexible and wearable electronic applications are now posing novel challenges to OWC whereby clothes, mechanically flexible design materials and even the human skin are increasingly being considered as possible supports for multifunctional applications.
Light UP has the ambition to transform the scenario of wearable OWC by developing a conceptually new class of ultrathin and flexible photodetectors with an expected time response as fast as a few tens of picoseconds, greatly surpassing any rivalling present wearable technology. The groundbreaking innovation that will enable this breakthrough will be based on the realization of a so-called “wide quantum well” in high quality atomically thin materials in which the ultrafast formation of a charge dipole upon light absorption will lead to a fast on/off optical modulation of the electrical signal in transistor geometries. Atomically thin materials will be engineered ad hoc by exploiting surface chemistry to heal defect and to exert a superior control over their energy band structure in order to obtain well-suited electronic, optical, and physical properties.
This ambitious interdisciplinary exploration will thrive on the unique synergy of the complementary expertise and skills by the applicant and host group encompassing nano-chemistry, material science, engineering and physics. Hence, this project will address a forefront research program pioneering (1) the development of a scalable solution-phase scheme for chemical engineering of defect states in atomically thin semiconductors; (2) the implementation of defect-free atomically thin semiconductors in ultrafast photodetector; and (3) the realization of atomically thin ultrafast photodetectors onto technological relevant flexible substrates.
Ámbito científico
- natural sciencescomputer and information sciencesinternetinternet of things
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesmathematicspure mathematicsgeometry
- engineering and technologychemical engineering
Programa(s)
Régimen de financiación
MSCA-IF-EF-ST - Standard EFCoordinador
EX4 4QJ Exeter
Reino Unido