CORDIS - EU research results

Enzyme-powered DNA nanorobotic devices

Project description

Bringing biological robots a step closer to reality

Biocompatible microrobots capable of autonomous movement will find many biomedical applications, including drug delivery. Enzymes have emerged as attractive actuators of microrobot self-propulsion due to their ability to convert substrates into products. The EU-funded DNA-bots project is a nanotechnology-driven initiative that proposes to develop enzyme-powered nanorobots. These robots will further integrate DNA nanoswitches, sensors which undergo a predefined conformational change upon binding a target sequence. The idea is that these biocompatible and biodegradable nanorobotic devices will be able to respond specifically to certain stimuli with great efficacy and sensitivity and release their cargo.


WHY: Enzyme-powered nanorobotic devices are able to self-propel thanks to the conversion of a substrate into products, holding a great potential for biomedical applications. A step forward in the field would be the precise control and design over the structure and enzyme spatial configuration, as well as the integration of complex functions. WHAT: DNA-bots is an interdisciplinary approach in which enzyme-propulsion and DNA nanotechnology will be merged to develop a new class of biocompatible and biodegradable nanorobotic devices able to self-propel, sense and actuate in front of specific stimuli. To achieve this goal, I will undertake a high risk/high gain research approach at the forefront of nanotechnology. The leading idea is to design and fabricate DNA nanostructures which will be site-specifically functionalized with enzymes to generate self-propulsion. The enzyme-powered DNA nanorobots will be further engineered by integrating DNA nanoswitches able to sense and perform loading and release of cargoes upon specific stimuli. HOW: The challenge met by this Project is to provide a groundbreaking contribution to DNA nanotechnology and nanorobotics. To achieve these objectives, I will be trained at the Host group led by Prof. Francesco Ricci (University of Rome Tor Vergata, Italy), which is a young and dynamic team at the vanguard of the use of DNA nanotechnology for sensing and drug-delivery applications. The Fellowship will proceed through a well-defined set of research and training tasks, organized into four work packages. Thanks to this MSCA Fellowship, I will continue expanding my scientific knowledge and acquiring cutting-edge skills (in synthetic biology, DNA nanotechnology, and nanorobotics), which will significantly impact my career as a researcher and help me to strenghten my position as an independent and mature researcher.


Net EU contribution
€ 183 473,28
00133 Roma

See on map

Centro (IT) Lazio Roma
Activity type
Higher or Secondary Education Establishments
Total cost
€ 183 473,28