Project description
Unravelling the link between plants and their growth regulators
How microbes interact at the root-soil interface is vital to obtaining nutrients. Generally, the species that beneficially associate with plants have many commonalities in regulating symbiotic relationships. The plant hormone gibberellic acid (GA) is a key plant growth regulator. Data on its role as a vital positive and negative regulator of nodule organogenesis remain contradictory. To address this issue, the EU-funded GAiNS project will determine the GA regulation mechanism in symbiosis in a small crop legume and barley by mainly using an advanced GA biosensor to characterise and model GA fluctuations in symbiosis. This will lead to better insight into the dynamics of GA signalling in symbiosis.
Objective
The association of microbes at the root-soil interface is an ancient adaptation integral for nutrient acquisition. Most land plants, including trees and crops, associate with mutualistic fungi called mycorrhizae. Legumes have adapted specialized root structures termed nodules for association with nitrogen-fixing bacteria (rhizobia). While there are differences among the species that beneficially associate with plants, there is a large overlap in the key players regulating both symbioses. One important regulator is gibberellin or gibberellic acid (GA), a plant hormone that has diverse and important functions in plant growth and development. While GA inhibits infection events, there is conflicting evidence for the role of GA as an important positive and negative regulator of nodule organogenesis. Here, I propose to determine the mechanism of GA regulation in symbiosis in the model plants Medicago truncatula and barley (Hordeum vulgare). My approach combines the use of a state-of-the-art GA biosensor to characterize and model GA fluctuations in symbiosis in combination with transcriptomic and genetic approaches to characterize GA-signaling response in M. truncatula and H. vulgare. Upon completion of this project, we will gain an understanding of the dynamics of GA signaling in symbiosis and define downstream GA targets that are of special interest for engineering enhanced symbiosis in cereal species.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences microbiology mycology
- natural sciences biological sciences biological behavioural sciences ethology biological interactions
- agricultural sciences agriculture, forestry, and fisheries agriculture grains and oilseeds cereals
- agricultural sciences agriculture, forestry, and fisheries agriculture grains and oilseeds legumes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.