Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Chemical Structure, Photo Physics and Emission Control of Single-Photon Emitters in Two-Dimensional Materials

Description du projet

Les technologies quantiques s’amincissent

Les sources monophotoniques sont des éléments de base pour les communications ultra-sécurisées, le calcul ultra-rapide et les techniques de mesure optique améliorées. La génération de photons uniques a été rendue possible principalement grâce aux points quantiques semi-conducteurs, aux défauts atomiques tels que les centres azote-lacune dans le diamant et aux nanotubes de carbone. De manière surprenante, l’émission de photons uniques à partir d’états de défaut inhabituels a également été observée pour plusieurs semi-conducteurs 2D atomiquement minces appelés dichalcogénures de métaux de transition et monocouches de nitrure de bore hexagonal. Les scientifiques ont démontré que ces défauts pouvaient être aménagés aux endroits souhaités selon les besoins, ouvrant ainsi la voie à une nouvelle classe de matériaux présentant un fort potentiel pour les technologies quantiques. Toutefois, l’ingénierie des émissions quantiques dans les matériaux 2D n’en est encore qu’à un stade très précoce. C’est sur le mécanisme à l’origine de ce phénomène que le projet 2D-QuEST, financé par l’UE, a concentré ses efforts.

Objectif

Single-photon sources are the foundation of quantum optical technologies, including quantum communications, computing and metrology. Since the first demonstration of single-photon emission from sodium atoms in a low-density atomic beam in 1977, this nonclassical phenomenon has been observed in various types of solid-state zero-dimensional (0D) and one-dimensional (1D) materials, such as single molecules, quantum dots, nitrogen-vacancy centers in diamond, silicon carbide, and carbon nanotubes.Very recently, a new class of single-photon emitter has emerged based on atomically thin two-dimensional (2D) materials, such as semiconducting transition metal dichalcogenides and hexagonal boron nitride monolayers. These novel single-photon emitters are due to the generation and recombination of excitons that are spatially localized by natural defects in 2D materials . Bright and stable light emission from these defect excitons occurs at photon energies below the delocalized exciton emission and thus exhibit ideal nonclassical single photon characteristics. Furthermore, their intrinsic presence within atomically thin 2D materials brings the advantages of the unprecedented materials compatibility and processing flexibility associated with this materials paradigm. In particular, the defects in 2D materials can be located at desired positions with atomic precision suggesting the potential to build extended quantum emitter networks. These promising properties offer a new path to the scalable integration of high-quality quantum emitters in quantum optical technologies. However, the research of 2D quantum emitters (2DQEs) is just at an early stage with many open questions about their fundamental properties, including their chemical and electronic structures and emission control. The answers to these open questions will deepen current knowledge in quantum optics and material science. Most importantly, they will guide the development of 2DQEs towards practical quantum application.

Régime de financement

MSCA-IF-EF-ST - Standard EF

Coordinateur

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Contribution nette de l'UE
€ 224 933,76
Adresse
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
Royaume-Uni

Voir sur la carte

Région
London Inner London — West Westminster
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 224 933,76