Descrizione del progetto
Le tecnologie quantistiche si riducono
Le fonti a singolo fotone sono elementi costitutivi fondamentali per comunicazioni ultra sicure, calcoli ultrarapidi e tecniche di misurazione ottica potenziate. La generazione di un singolo fotone è stata ottenuta in particolare con punti quantici a semiconduttore, difetti atomici quali i centri privi di azoto nel diamante e nanotubi di carbonio. Sorprendentemente, l’emissione di un singolo fotone da insoliti stati di difetto è stata trovata anche in diversi semiconduttori 2D atomicamente sottili chiamati metalli di transizione dicalcogenidi e monostrati di nitruro di boro esagonale. Gli scienziati hanno dimostrato che questi difetti possono essere preparati a piacimento nei siti desiderati, inaugurando una nuova classe di materiali con un potenziale per le tecnologie quantistiche. Tuttavia, la progettazione di emissioni quantistiche in materiali 2D è ancora in una fase molto precoce. Il meccanismo responsabile di questo fenomeno è al centro del progetto 2D-QuEST finanziato dall’UE.
Obiettivo
Single-photon sources are the foundation of quantum optical technologies, including quantum communications, computing and metrology. Since the first demonstration of single-photon emission from sodium atoms in a low-density atomic beam in 1977, this nonclassical phenomenon has been observed in various types of solid-state zero-dimensional (0D) and one-dimensional (1D) materials, such as single molecules, quantum dots, nitrogen-vacancy centers in diamond, silicon carbide, and carbon nanotubes.Very recently, a new class of single-photon emitter has emerged based on atomically thin two-dimensional (2D) materials, such as semiconducting transition metal dichalcogenides and hexagonal boron nitride monolayers. These novel single-photon emitters are due to the generation and recombination of excitons that are spatially localized by natural defects in 2D materials . Bright and stable light emission from these defect excitons occurs at photon energies below the delocalized exciton emission and thus exhibit ideal nonclassical single photon characteristics. Furthermore, their intrinsic presence within atomically thin 2D materials brings the advantages of the unprecedented materials compatibility and processing flexibility associated with this materials paradigm. In particular, the defects in 2D materials can be located at desired positions with atomic precision suggesting the potential to build extended quantum emitter networks. These promising properties offer a new path to the scalable integration of high-quality quantum emitters in quantum optical technologies. However, the research of 2D quantum emitters (2DQEs) is just at an early stage with many open questions about their fundamental properties, including their chemical and electronic structures and emission control. The answers to these open questions will deepen current knowledge in quantum optics and material science. Most importantly, they will guide the development of 2DQEs towards practical quantum application.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- natural scienceschemical sciencesinorganic chemistryinorganic compounds
- engineering and technologynanotechnologynano-materialstwo-dimensional nanostructures
- natural sciencesphysical sciencesquantum physicsquantum optics
- natural scienceschemical sciencesinorganic chemistrymetalloids
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Programma(i)
Argomento(i)
Meccanismo di finanziamento
MSCA-IF-EF-ST - Standard EFCoordinatore
SW7 2AZ LONDON
Regno Unito