Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Mixotrophy in marine microalgae for renewable biomass production

Project description

Cultivating algae as a renewable biomass source

In the search for sources of renewable energy for industry, phytoplankton known as diatoms hold a promising role because of their natural production of valuable fatty acids used as energy for a wide swathe of marine life, even in cold and low-light conditions. Despite the diatoms’ ubiquitous presence in water, their extensive cultivation is hindered by the high cost of such processes. The MMM-Rebio project aims at using local strains to study and develop mixotrophic or combined method cultivation on the Swedish west coast for potential industrial use.

Objective

Diatoms are unicellular eukaryotic algae (microalgae) and one of the most common and diverse type of marine phytoplankton. Thanks to a flexible cell metabolism, they dominate in environmental conditions normally unfavorable for photosynthesis, i.e. freezing seawater, low light intensity and short photoperiod. Moreover, diatoms are able to synthesize storage lipids (20-50% of cell dry weight) that can be used for production of renewable biomass and high-value fatty acids. However, the success of these microalgae as feedstock depends on lowering the production cost. The proposed project aims to develop mixotrophic cultivation (i.e. the simultaneous use of light and carbon dioxide for photosynthesis and organic carbon for respiration) to maximize growth and outdoor productivity for selected strains from the Swedish west coast. The focus will be on the bloom-forming coastal diatom Skeletonema marinoi (S. marinoi) whose sequence annotation is ongoing, and the recent knowledge on mixotrophic growth of the model diatom Phaeodactylum tricornutum will be employed. The main objectives will be: i) using the bloom-forming S. marinoi to better understand mixotrophic metabolism in diatoms; ii) exploring the optimal mixotrophic conditions for enhanced productivity of S. marinoi; iii) investigating the potential industrial applications of S. marinoi when cultivated under mixotrophy. To achieve these objectives, an interdisciplinary approach including computational, biophysical, analytical, biotechnological and biological methods will be employed. A mixotrophic outdoor cultivation of marine microalgae in the dynamic climate of the Swedish west coast could provide a higher total production of renewable biomass for industry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

GOETEBORGS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 191 852,16
Address
VASAPARKEN
405 30 Goeteborg
Sweden

See on map

Region
Södra Sverige Västsverige Västra Götalands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 191 852,16
My booklet 0 0