Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Workflows for the Large-Scale Collection and Transference of Knowledge across Languages: Using Natural Language Processing to Produce High-Quality Contents with Language Learners

Description du projet

Un nouveau flux de travail à transfert multilingue pour un contenu à grande échelle

La traduction d’une langue est une tâche complexe. Il est difficile de trouver un équivalent direct lorsque nous transférons le contenu d’une langue vers une autre, chaque langue ayant son propre système pour transmettre des concepts. Le projet WIKOLLECT, financé par l’UE, étudiera cette problématique en s’appuyant sur une complémentarité entre le traitement naturel des langues, l’apprentissage des langues et l’externalisation ouverte. Il développera un flux de travail spécifique pour le transfert à grande échelle de contenu de qualité élevée en plusieurs langues. Il comporte quatre étapes cycliques pour identifier de manière automatique le contenu de la langue source absent de la langue cible, et générer de potentielles traductions. Appliqué en italien et en allemand sur Wiktionary, le dictionnaire multilingue en ligne au contenu gratuit, le flux de travail de ce projet promouvra la réutilisation équitable de contenu en plusieurs langues, et facilitera le transfert de connaissances.

Objectif

WiKollect aims at creating a workflow for the large-scale transference of high-quality contents across languages. The workflow is divided in four cyclic steps. In step (i) an automatic model will identify contents available in a document in language A which are missing in a document, on the same topic, in language B. In step (ii) candidates to fill the gaps in the document in language B will be automatically generated. In step (iii) such candidates will be subject to manual evaluation by language learners. In step (iv) the contents identified as high-quality will be promoted to fill the gaps in the document in language B. WiKollect will take advantage of the barely-exploited synergy among natural language processing, language learning, and crowdsourcing. To address the different research challenges posed by the workflow design and implementation, it will create an innovative and re-usable hybrid intelligence architecture combining (a) artificial intelligence —such as machine learning and natural language processing— to identify contents worth transferring across languages and generate potential translations and (b) human intelligence —by means of implicit crowdsourcing— relying on a crowd of language learners to flag good contents. WiKollect will create different by-products in addition to the research products that will be generated by addressing each step in the four-step workflow. Language learning exercises on specific topics and complexity levels will be generated. The fair re-use of contents across languages will be promoted with the mass production of high-quality contents. During the MSC period, WiKollect will target the generation of Wiktionary contents in Italian and German. Still, the workflow is flexible and extendable and can be applied to other documents (e.g. Wikipedia articles, news) and languages in the near future.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2018

Voir tous les projets financés au titre de cet appel

Coordinateur

ACCADEMIA EUROPEA DI BOLZANO
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 183 473,28
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 183 473,28
Mon livret 0 0