Projektbeschreibung
Mehrdimensionale Quantensysteme für Quantencomputer
Quantenmechanische Überlagerungen stellen das Herzstück der außergewöhnlichen Leistungsfähigkeit von Quantencomputern dar. Im Überlagerungszustand treten Qubits gleichzeitig als Null und als Eins auf. Im Gegensatz zu Qubits können Qudits mehrere Dimensionen annehmen. Durch Erhöhung der Anzahl verschränkter Teilchen und Dimensionen werden leistungsfähigere Quantencomputer realisierbar. Das EU-finanzierte Projekt InDiQE entwickelt mathematische Werkzeuge für die Untersuchung der Quantenverschränkung von Qudits in hohen Dimensionen. Die neuen Verfahrensweisen werden Wissenschaftlerinnen und Wissenschaftlern dabei helfen, die Quantenverschränkung in mehrgliedrigen Systemen mathematisch zu beschreiben und zu quantifizieren. Die Erforschung dieser mehrdimensionalen verschränkten Zustände komplexer Quantensysteme könnte einen anwendungsorientierteren Weg für die Konstruktion hocheffizienter Quantencomputer aufzeigen.
Ziel
The fundamental understanding of quantum correlations, as well as their characterization and quantification play a fundamental role for information processing and communication. The investigation of quantum correlations in high-dimensional, infinite dimensional or hybrid systems is of particular interest for the development of novel applications in quantum technologies. High-dimensional entangled states contain a large amount of entanglement, which represents a vital resource for applications in quantum information processing. The goal of this proposal is to find an optimal strategy to exploit this resource. Crucial open problems to be solved are the continuation of the development of mathematical methods and observable conditions for a convenient description of general qudit systems, and verifying as well as quantifying general quantum correlations in high-dimensional and multipartite systems. This project is placed at the border between quantum information theory and quantum optics, exploring the potential of high and infinite dimensional systems for quantum information tasks. Additionally, modern questions in quantum thermodynamics also relate to the control of infinite dimensional quantum systems and will benefit from the methods developed. Particularly, we adapt and further develop theoretical tools to harness and efficiently describe quantum correlations in complex systems. The specific objectives are to advance the understanding of practical systems and realistic scenarios for quantum information tasks and quantum
thermodynamics applications. Furthermore, the role that different kinds of quantum correlations have when complex systems are constituted of multiple degrees of freedom will be addressed. We are going to accomplish these goals by quantifying and classifying multimode non-classicality, investigating discrete- and continuous-variables hybrid systems and the discretization problem, addressing key challenges in the respective fields.
Wissenschaftliches Gebiet
- natural sciencesphysical sciencesthermodynamics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural sciencesphysical sciencesoptics
- natural sciencesphysical sciencesquantum physicsquantum optics
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
MSCA-IF-EF-ST - Standard EFKoordinator
1010 Wien
Österreich