Project description
Untangling why some motor neurons succumb more quickly to disease than others
Alpha motor neurons (aMNs), also called lower motor neurons, are the largest neurons in the spinal cord. They innervate muscles and cause them to contract. Damage to aMNs cause impaired movement or paralysis and is associated with a variety of neuromuscular disorders, diseases and trauma. There are three main types of aMN depending on the type of muscle fibre they innervate: slow-twitch fatigue-resistant (SFR), fast-twitch fatigue-resistant (FFR) and fast-twitch fatigable (FF). FF aMNs are particularly vulnerable to many disease states. MOVEMeNt is investigating differences in genetic markers among the three to elucidate disease vulnerability and resistance. Along the way, they will provide the complete transcriptome for all three types of aMNs for the first time.
Objective
Alpha motor neurons (aMN) are a clinically relevant neuronal population that selectively degenerates in neuromuscular diseases, including amyotrophic lateral sclerosis (ALS) and spinal bulbar muscular atrophy (SBMA). Distinct classes of aMNs (SFR, FFR and FF) degenerate at different rate in these diseases, with the fast fatigable (FF) MNs degenerating first. The molecular mechanisms underlying this selective vulnerability are only partially known. Understanding the molecular logics that shape the identity and function of aMN subtypes in vivo is directly relevant to the development of novel therapeutic strategies. Here I propose to harmonically integrate my solid background in dissecting the molecular fingerprints of distinct neuronal subtypes in adult mice by undertaking new technologies I pioneered at Harvard University, with new skills and knowledge I will build at the Host Institution, which will be critical for the successful achievement of my goal. The overreaching goal of MOVEMeNt is to identify the molecular substrate of disease vulnerability in aMNs. I will (Aim 1) isolate and FACS-purify aMN-nuclei from adult mouse spinal cords, based on the specific expression of aMN markers. Single cell transcriptomic analysis will reveal class-specific molecular fingerprints, including factors playing key roles in suptype-specific development, function, and disease vulnerability. I will also (Aim2) analyze the transcriptional changes of differentially vulnerable aMN classes upon retrograde labeling and functional denervation by neurotoxin intoxication. This work will return candidate genes directly controlling terminal sprouting and remodeling, critical steps that disease-resistant aMN subtypes normally undertake for neuronal loss compensation upon insult. More broadly, I aim to contribute in filling an important knowledge gap by generating the first transcriptomic roadmap of aMN subtypes, and pinpointing at new candidates for therapy development.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-RI - RI – Reintegration panel
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
35122 PADOVA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.