Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Mathematics Analogies

Project description

Filling gaps in the analogies between mathematics and metaphysics

A priori knowledge is essentially the opposite of hindsight - it is knowing something without the need for experience. Philosophically, it is related to the idea of universal truths and metaphysical realism, the philosophy that the world is as it is independently of how humans perceive it. These concepts also play into discussions of a priori domains including ethics and religion. Analogies with mathematics, yet another a priori domain, are increasingly used to explain, advance or corroborate various views. The EU-funded MathematicsAnalogies project will draw on expertise in mathematical philosophy to fill important gaps in current debates.

Objective

This project investigates how mathematics analogies impact metaphysical realism-antirealism. The overarching goal is to develop a systematic account of the potentials and limits of using mathematics as a model for other a priori domains, thus responding to the rapidly increasing literature exploiting structural parallels between mathematics and other a priori domains. In current ontological, semantic, and epistemic debates, mathematics frequently functions as a model for other a priori domains. Metaethicists in particular have started to use local structural parallels between mathematics and morality in order to corroborate particular metaethical views, but mathematics has also been argued to share relevant features with the domains of logic, modality, and religion. The 'mathematics analogies' employed in those arguments share a common form: a local analogy between mathematics and another domain is identified, based on which a global conclusion is drawn about one or both of the domains. What is completely missing in these debates, however, is a discussion of (a) the plausibility of the analogies in light of their mathematical background assumptions, (b) an adequate methodology for analogical reasoning about a priori domains, and (c) the prospects of developing a unified framework for all a priori domains. This is the gap this project is going to fill. Conducting this project as a Marie Sklodowska Curie Fellow at the best European institution for mathematical philosophy, the MCMP in Munich, will establish me firmly as an independent scholar in my field and thus, help me reach my goal of attaining a permanent academic position.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 174 806,40
Address
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 174 806,40
My booklet 0 0