Description du projet
Combler les lacunes dans les analogies entre les mathématiques et la métaphysique
La connaissance a priori est essentiellement l’opposé de la rétrospective – il s’agit de connaître quelque chose sans recourir à l’expérience. Sur le plan philosophique, elle est liée à l’idée de vérités universelles et de réalisme métaphysique, la philosophie selon laquelle le monde est tel qu’il est indépendamment de la façon dont les humains le perçoivent. Ces concepts interviennent également dans les discussions sur les domaines a priori, notamment l’éthique et la religion. Les analogies avec les mathématiques, un autre domaine a priori, sont de plus en plus utilisées pour expliquer, faire progresser ou corroborer divers points de vue. Le projet MathematicsAnalogies, financé par l’UE, s’appuiera sur l’expertise en philosophie mathématique pour combler d’importantes lacunes dans les débats actuels.
Objectif
This project investigates how mathematics analogies impact metaphysical realism-antirealism. The overarching goal is to develop a systematic account of the potentials and limits of using mathematics as a model for other a priori domains, thus responding to the rapidly increasing literature exploiting structural parallels between mathematics and other a priori domains. In current ontological, semantic, and epistemic debates, mathematics frequently functions as a model for other a priori domains. Metaethicists in particular have started to use local structural parallels between mathematics and morality in order to corroborate particular metaethical views, but mathematics has also been argued to share relevant features with the domains of logic, modality, and religion. The 'mathematics analogies' employed in those arguments share a common form: a local analogy between mathematics and another domain is identified, based on which a global conclusion is drawn about one or both of the domains. What is completely missing in these debates, however, is a discussion of (a) the plausibility of the analogies in light of their mathematical background assumptions, (b) an adequate methodology for analogical reasoning about a priori domains, and (c) the prospects of developing a unified framework for all a priori domains. This is the gap this project is going to fill. Conducting this project as a Marie Sklodowska Curie Fellow at the best European institution for mathematical philosophy, the MCMP in Munich, will establish me firmly as an independent scholar in my field and thus, help me reach my goal of attaining a permanent academic position.
Champ scientifique
Mots‑clés
Programme(s)
Régime de financement
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinateur
80539 MUNCHEN
Allemagne