Description du projet
Faible régularité et fortes oscillations: le calcul des équations dispersives (LAHACODE)
Les équations aux dérivées partielles (EDP) jouent un rôle central en mathématiques, nous permettant de décrire des phénomènes physiques allant des atomes ultra-froids à la matière ultra-chaude, des algorithmes d’apprentissage aux fluides circulant dans le cerveau humain. Mais pour en comprendre la nature, il importe de mieux appréhender leur comportement qualitatif et de pouvoir calculer de manière fiable leur approximation numérique. Si les problèmes linéaires et les solutions douces sont aujourd’hui bien compris, une description fiable des phénomènes «non doux» demeure un problème ouvert et difficile à résoudre. L’ambition globale du projet LAHACODE, financé par le CER, est de franchir une étape clé vers la suppression de cette lacune en intégrant profondément la structure sous-jacente des résonances dans la discrétisation numérique. Cela nous permettra de relier la discrétisation dimensionnelle finie à des résultats d’existence puissants pour les EDP non linéaires à faible régularité.
Objectif
Partial differential equations (PDEs) play a central role in mathematics, allowing us to describe physical phenomena ranging from ultra-cold atoms (Bose–Einstein condensation) up to ultra-hot matter (nuclear fusion), from learning algorithms to fluids in the human brain. To understand nature we have to understand their qualitative behavior: existence and long time behavior of solutions, their geometric and dynamical properties – as well as to compute reliably their numerical solution. While linear problems and smooth solutions are nowadays well understood, a reliable description of ‘non-smooth’ phenomena remains one of the most challenging open problems in computational mathematics since the underlying PDEs have very complicated solutions exhibiting high oscillations and loss of regularity. This leads to huge errors, massive computational costs and ultimately provokes the failure of classical schemes. Nevertheless, ‘non-smooth phenomena’ play a fundamental role in modern physical modeling (e.g. blow-up phenomena, turbulences, high frequencies, low dispersion limits, etc.) which makes it an essential task to develop suitable numerical schemes. The overall ambition of LAHACODE is to make a crucial step towards closing this gap – addressing the fundamental question: How and to what extent can we reproduce the qualitative behavior of differential equations in a finite (discretized) world? LAHACODE is situated at the challenging frontiers of analysis and numerics. The main objective is to develop a novel class of numerical schemes for nonlinear PDEs with strong geometric structure at low regularity and high oscillations. The key idea in the construction of the new schemes is to tackle and deeply embed the underlying structure of resonances in the numerical discretizations. As in the continuous case, these terms are central to structure preservation, and provide the new schemes with remarkable properties – allowing reliable approximations where classical schemes fail.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures analyse mathématique équations différentielles équations différentielles partielles
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-STG - Starting Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2019-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
75006 PARIS
France
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.