CORDIS - Forschungsergebnisse der EU
CORDIS

Low-regularity and high oscillations: numerical analysis and computation of dispersive evolution equations

Projektbeschreibung

Starke Oszillationen mit geringer Regelmäßigkeit: Berechnung von Dispersionsgleichungen (LAHACODE)

Partielle Differentialgleichungen spielen eine zentrale Rolle in der Mathematik und ermöglichen die Beschreibung physikalischer Phänomene, die von ultrakalten Atomen bis zu ultraheißer Materie sowie von Lernalgorithmen bis zu Flüssigkeiten im menschlichen Gehirn reichen. Um die Natur zu verstehen, müssen wir ihr qualitatives Verhalten nachvollziehen und ihre numerische Näherung zuverlässig berechnen. Während lineare Probleme und glatte Lösungen heutzutage bereits gut erforscht sind, bleibt eine zuverlässige Beschreibung „nicht-glatter“ Phänomene ein herausforderndes offenes Problem. Das übergeordnete Ziel des ERC-finanzierten Projekts LAHACODE besteht darin, einen entscheidenden Schritt zur Schließung dieser Lücke zu machen, indem die zugrundeliegende Struktur der Resonanzen tief in die numerische Diskretisierung eingebettet wird. Dies wird uns erlauben, die endlich dimensionale Diskretisierung mit leistungsstarken Existenzergebnissen für nichtlineare partielle Differentialgleichungen bei geringer Regelmäßigkeit zu verknüpfen.

Ziel

Partial differential equations (PDEs) play a central role in mathematics, allowing us to describe physical phenomena ranging from ultra-cold atoms (Bose–Einstein condensation) up to ultra-hot matter (nuclear fusion), from learning algorithms to fluids in the human brain. To understand nature we have to understand their qualitative behavior: existence and long time behavior of solutions, their geometric and dynamical properties – as well as to compute reliably their numerical solution. While linear problems and smooth solutions are nowadays well understood, a reliable description of ‘non-smooth’ phenomena remains one of the most challenging open problems in computational mathematics since the underlying PDEs have very complicated solutions exhibiting high oscillations and loss of regularity. This leads to huge errors, massive computational costs and ultimately provokes the failure of classical schemes. Nevertheless, ‘non-smooth phenomena’ play a fundamental role in modern physical modeling (e.g. blow-up phenomena, turbulences, high frequencies, low dispersion limits, etc.) which makes it an essential task to develop suitable numerical schemes. The overall ambition of LAHACODE is to make a crucial step towards closing this gap – addressing the fundamental question: How and to what extent can we reproduce the qualitative behavior of differential equations in a finite (discretized) world? LAHACODE is situated at the challenging frontiers of analysis and numerics. The main objective is to develop a novel class of numerical schemes for nonlinear PDEs with strong geometric structure at low regularity and high oscillations. The key idea in the construction of the new schemes is to tackle and deeply embed the underlying structure of resonances in the numerical discretizations. As in the continuous case, these terms are central to structure preservation, and provide the new schemes with remarkable properties – allowing reliable approximations where classical schemes fail.

Finanzierungsplan

ERC-STG - Starting Grant

Gastgebende Einrichtung

SORBONNE UNIVERSITE
Netto-EU-Beitrag
€ 1 499 905,00
Adresse
21 RUE DE L'ECOLE DE MEDECINE
75006 Paris
Frankreich

Auf der Karte ansehen

Region
Ile-de-France Ile-de-France Paris
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 499 905,00

Begünstigte (2)