Description du projet
Une nouvelle étude apporte des indices sur les problèmes liés au graphe de Cayley
Les graphes de Cayley encodent la structure abstraite d’un groupe. C’est un outil important pour l’étude de la combinatoire et de la géométrie des groupes. Une métrique des mots sur un groupe G permet de mesurer la distance entre deux éléments du groupe quels qu’ils soient. L’objectif du projet WordMeasures, financé par l’UE, est d’exposer les invariants qui président aux différents aspects de la métrique des mots. L’étude des mesures de mots s’avérera utile non seulement pour analyser les graphiques aléatoires de Cayley et Schreier, mais également pour résoudre de nombreux problèmes relatifs aux groupes libres et aux groupes d’automorphisme.
Objectif
Recent years brought immense progress in the study of Cayley graphs of finite groups, with many new results concerning their expansion, diameter, girth etc. Yet, many central open questions remain. These questions, especially those concerning random Cayley graphs, are major motivation to this proposed research.
Central in this project is the study of word measures in finite and compact groups. A word w in a free group F induces a measure on every finite or compact group G as follows: substitute every generator of F with an independent Haar-random element of G and evaluate the product defined by w to obtain a random element in G. The main goal here is to expose the invariants of the word w which control different aspects of these measures. The study of word measures, mostly by the PI and collaborators, has proven useful not only for analyzing random Cayley and Schreier graphs of G, but also for many questions revolving around free groups and their automorphism groups. Moreover, the study of word measures has exposed a deep and beautiful mathematical theory with surprising connections to objects in combinatorial and geometric group theory and in low dimensional topology. This theory is still in its infancy, with many beautiful open questions and intriguing challenges ahead.
Another line of research revolves around a few irreducible representations of a finite group which control the spectral gap of Cayley graphs. The proof of Aldous' conjecture in 2010 showed that this happens more commonly than one could have naïvely guessed. There is additional evidence, some of which found by the PI and collaborators, that Aldous' conjecture is only the tip of the iceberg, especially for Cayley graphs of the symmetric group Sym(n). Our most optimistic conjectures here have extremely strong consequences for these Cayley graphs.
We intend to use our progress in the above two directions in order to answer some intriguing open questions concerning Cayley and Schreier graphs.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-STG - Starting Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2019-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
69978 Tel Aviv
Israël
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.