Description du projet
Modéliser la morphogenèse de ramification
Certains organes, tels que les poumons et les reins, par exemple, ont besoin d’un rapport surface/volume élevé pour fonctionner et créent des structures tubulaires très ramifiées au cours d’un processus de développement appelé morphogenèse de ramification. Les mécanismes, la signalisation moléculaire et la réorganisation cellulaire nécessaires à la création de la structure de l’organe restent des questions fondamentales ouvertes. Le projet Demos, financé par l’UE, utilisera des méthodes théoriques pour comprendre comment les règles stochastiques conduisent à la morphogenèse des organes, y compris la coordination bidirectionnelle du destin des cellules individuelles. Les chercheurs appliqueront leur vaste expérience en matière de modélisation des interactions cytosquelettiques, de la dynamique des cellules souches et des processus de ramification en général en combinant à plusieurs échelles la biologie des systèmes et les approches biophysiques.
Objectif
Branching morphogenesis, the process by which branched organs such as the lung, prostate, kidney or mammary gland are generated, is a paradigmatic example of complex developmental processes bridging multiple scales. The mechanisms through which given molecular signals and cellular behaviours give rise to a robust organ structure remains a fundamental and open question, for which theoretical methods are needed. Our experience in modelling cytoskeletal mechanics, stem cell dynamics and branching processes puts us in a unique position to tackle this fascinating problem, by combining systems biology and biophysical approaches at multiple scales. In particular, we will focus on:
1. Understanding how stochastic rules lead to robust morphogenetic outputs at the organ scale, and which constraints and optimal design principles they impose on physiological function.
2. Characterizing at the cellular scale the bi-directional feedbacks coordinating fate choices of stem/progenitor cells and niche signals during the extensive remodelling events that branching morphogenesis entails.
3. Developing at the subcellular and cellular scale an integrated mechanochemical theory of pattern formation in branched organs, to understand the coordination of mechanical forces and chemical signals defining their global structure.
Towards these goals, we will combine analytical and numerical tools with data analysis methods, to reach a quantitative understanding of the emergent mechanisms driving branching morphogenesis. We will challenge our theoretical predictions with published datasets available for different organs, as well as design specific experimental tests in collaboration with experimental biology groups. This will allow us to compare and contrast different systems, and extract generic classes of design principles of organogenesis across length scales. With this, we expect to generate novel insights of broad relevance for the fields of systems, computational and developmental biology.
Champ scientifique
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
3400 Klosterneuburg
Autriche