Descrizione del progetto
Modellizzazione della morfogenesi ramificata
Alcuni organi, quali polmoni e reni ad esempio, richiedono per la loro funzione un elevato rapporto superficie-volume e creano strutture tubolari altamente ramificate nel corso di un processo evolutivo chiamato morfogenesi ramificata. I meccanismi, la via di segnalazione molecolare e la riorganizzazione cellulare necessari per la creazione della struttura dell’organo rimangono fondamentali questioni aperte. Il progetto Demos, finanziato dall’UE, utilizzerà metodi teorici per comprendere come le regole stocastiche conducano alla morfogenesi dell’organo, incluso il coordinamento bidirezionale della destinazione delle singole cellule. I ricercatori applicheranno la loro vasta esperienza nella modellizzazione di interazioni citoscheletriche, dinamiche delle cellule staminali e processi di ramificazione in generale, combinando biologia dei sistemi e approcci biofisici su più scale.
Obiettivo
Branching morphogenesis, the process by which branched organs such as the lung, prostate, kidney or mammary gland are generated, is a paradigmatic example of complex developmental processes bridging multiple scales. The mechanisms through which given molecular signals and cellular behaviours give rise to a robust organ structure remains a fundamental and open question, for which theoretical methods are needed. Our experience in modelling cytoskeletal mechanics, stem cell dynamics and branching processes puts us in a unique position to tackle this fascinating problem, by combining systems biology and biophysical approaches at multiple scales. In particular, we will focus on:
1. Understanding how stochastic rules lead to robust morphogenetic outputs at the organ scale, and which constraints and optimal design principles they impose on physiological function.
2. Characterizing at the cellular scale the bi-directional feedbacks coordinating fate choices of stem/progenitor cells and niche signals during the extensive remodelling events that branching morphogenesis entails.
3. Developing at the subcellular and cellular scale an integrated mechanochemical theory of pattern formation in branched organs, to understand the coordination of mechanical forces and chemical signals defining their global structure.
Towards these goals, we will combine analytical and numerical tools with data analysis methods, to reach a quantitative understanding of the emergent mechanisms driving branching morphogenesis. We will challenge our theoretical predictions with published datasets available for different organs, as well as design specific experimental tests in collaboration with experimental biology groups. This will allow us to compare and contrast different systems, and extract generic classes of design principles of organogenesis across length scales. With this, we expect to generate novel insights of broad relevance for the fields of systems, computational and developmental biology.
Campo scientifico
Not validated
Not validated
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-STG - Starting GrantIstituzione ospitante
3400 Klosterneuburg
Austria