Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Acousto-Magnetic Micro/Nanorobots for Biomedical Applications

Project description

Micro/nanorobots for medical applications

Micro/nanorobots have immense potential in medicine, including targeted drug delivery, precision microsurgery, and diagnosis. Success in the introduction of medical micro/nanorobots relies on the development of efficient and safe propulsion mechanisms for navigation in the bloodstream. The objective of this EU-funded proposal is to develop new wireless micro/nanorobotic systems using acoustic and magnetic actuation modalities. The research will address fundamental aspects of the application of micro/nanorobots in animal models, and results will be tested in 3D microfluidic and zebrafish disease models.

Objective

Micro/nanorobots can transform many aspects of medicine by enabling tasks, such as delivering drugs or genes precisely to targeted areas, transducing force on individual cells or tissues, performing biopsies, and facilitating non-invasive surgeries. Numerous propulsion mechanisms have been developed, but their low propulsion speed, lack of biocompatibility, and poor navigation capabilities have limited their use. The objective of this proposal is to develop wireless micro/nanorobots using acoustic and magnetic actuation modalities that will be used to navigate in microfluidics and zebrafish disease models to help better understand and treat diseases. The combination of ultrasound and magnetic fields is capable of overcoming the limitations encountered using a single actuation technique, and both are used extensively in clinical diagnostics and therapeutics. This proposal is divided into three research areas. 1) To date, no systematic studies have been conducted utilizing micro/nanorobotics on living animals. The research will address many of the fundamental challenges of using micro/nanorobots in living animals, followed by testing in microfluidics, 3D arbitrarily-shaped fluidic devices, and the vasculature of zebrafish embryos. Propulsion will be studied in the direction of and against blood flow, a 3D propulsion will be developed, and a swarm of nanorobots will be studied. 2) A platform will be developed that involves the trapping and manipulation of nanorobots in an animal model, such as zebrafish embryos. 3) We will develop an active drug delivery platform combined with other methods to study numerous disease models using the models based on live zebrafish embryos. We believe the results of the proposed research will have a significant impact in the field.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-STG

See all projects funded under this call

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 484 839,00
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 484 839,00

Beneficiaries (1)

My booklet 0 0