Description du projet
Assister les ordinateurs dans la compréhension du langage humain
La compréhension du langage naturel (NLU) constitue une branche de l’intelligence artificielle (IA) qui utilise les logiciels informatiques pour comprendre les saisies effectuées sous forme de phrases dans les formats textuels et vocaux. Prenez pour exemple Siri qui répond à une question concernant les conditions de circulation du matin, ou Alexa qui traite une question relative à la météo de votre ville. En d’autres termes, la NLU digère un texte humain, le traduit en langage informatique et génère un résultat en langage humain. Les applications de NLU ont des besoins d’informations uniques et nécessitent de vastes ensembles de données annotées afin de parvenir à des résultats probants. Le projet INTERACT financé par l’UE va développer de nouveaux algorithmes d’apprentissage interactif (ILA), motivés par des applications dans le domaine de la NLU. Il combinera l’apprentissage par représentation et l’apprentissage actif des modèles composites de transition latente (CLSM) dans la mesure où le langage naturel est riche, complexe et composite.
Objectif
INTERACT will develop new Interactive Learning Algorithms (ILA), motivated by applications in Natural Language Understanding (NLU). The main assumptions behind supervised approaches are unrealistic because most NLU applications have unique information needs, and large collections of annotated data are necessary to achieve good performance. INTERACT follows a collaborative machine learning paradigm that breaks the distinction between annotation and training. We focus on compositional latent-state models (CLSMs) because natural language is rich, complex and compositional. To reduce the amount of human feedback necessary for learning CLSMs we must eliminate annotation redundancy. We argue that to achieve this in the context of CLSMs we must combine: (1) An optimal human feedback strategy, with (2) inducing a latent structure of parts in the compositional domain. Annotation effort will be minimized because the method will only request representative feedback from each latent class. INTERACT marries representation learning (i.e. of parts) and active learning for CLSMs.
Our approach goes beyond classical active learning where the ILA asks labels for samples chosen from a pool of unlabeled data. We empower the ILA with the ability to ask for labels for any complete or partial structure in the domain, i.e. the ILA will be able to generate samples.
We work under the framework of spectral learning of weighted automata and grammars and use ideas from query learning. A key idea is reducing the problem of interactive learning of CLSMs to a form of interactive low-rank matrix completion. Our concrete goals are: (1) Develop ILAs for CLSMs based on spectral learning techniques; and (2) Investigate optimal strategies to leverage human feedback, taking into account what is optimal for the ILA and what is easy for the teacher.
We will experiment with NLU tasks of increasing complexity, from sequence and tree classification to parsing problems where the outputs are trees.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-STG - Starting Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2019-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
08034 Barcelona
Espagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.