Description du projet
L’apprentissage automatique s’étend à la modélisation du climat
Les modèles du système terrestre constituent la base de la compréhension et des projections en matière de changement climatique. Malgré les progrès réalisés dans ce domaine, la capacité des modèles à simuler les réponses du système terrestre tant au niveau mondial que régional est limitée par la représentation des processus physiques et biologiques à petite échelle. Le projet USMILE, financé par l’UE, utilisera l’apprentissage automatique pour améliorer la modélisation et la compréhension du système terrestre. Les chercheurs établiront des algorithmes d’apprentissage automatique pour améliorer les ensembles de données d’observation de la Terre en tenant compte des covariations spatio-temporelles, et développeront des paramétrisations et des sous-modèles basés sur l’apprentissage automatique pour les nuages et les processus de surface terrestre qui ont entravé les progrès de la modélisation du climat pendant des décennies. En outre, grâce à de nouvelles techniques d’apprentissage approfondi et de découverte des causes, ils identifieront et élucideront des modes de variabilité du climat et des extrêmes multivariés et mettront en évidence des aspects dynamiques du système terrestre.
Objectif
Earth system models are fundamental to understand climate change. Although they have improved significantly, considerable biases and uncertainties in their projections remain. Process parameterisations limit the models’ ability to simulate both global and regional Earth system responses, which are key for assessing climate change and its impacts on ecosystems and society. In recent years, the volume of data from high-resolution models and observations has substantially increased to petabyte scales. Concomitantly, the field of machine learning (ML) has quickly developed, promising breakthroughs in detecting and analysing non-linear relationships and patterns in large multivariate datasets. Yet, traditionally, physical modelling and ML have been often treated as two different worlds with opposite scientific paradigms (theory-driven versus data-driven). Thus, despite its great potential, ML has not yet been widely adopted for addressing the urgent need of improved understanding and modelling of the Earth system. USMILE will combine multi-disciplinary expertise in ML and process-based atmosphere and land modelling to completely rethink model development and evaluation. ML will further allow us to define novel observational constraints on Earth system feedbacks and climate projections. We will (1) develop ML algorithms to enhance Earth observation datasets accounting for spatio-temporal covariations, (2) deploy ML-based parameterisations and sub-models for clouds and land-surface processes that have hindered progress in climate modelling for decades, and (3) detect and understand modes of climate variability, multivariate extremes and uncover dynamical aspects of the Earth system with novel deep learning and causal inference techniques. USMILE will drive a paradigm shift in the current modelling of the Earth system towards a new data-driven physics-aware science and to an unprecedented reduction of uncertainties in projections.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-SyG - Synergy grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2019-SyG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
51147 KOLN
Allemagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.