Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Understanding and Modelling the Earth System with Machine Learning

Descrizione del progetto

L’apprendimento automatico entra nel campo della modellistica climatica

I modelli del sistema Terra sono la base della comprensione e della previsione dei cambiamenti climatici. Nonostante i progressi compiuti in tal ambito, la capacità di questi modelli di simulare le risposte del sistema Terra a livello globale e regionale è limitata dalla rappresentazione dei processi fisici e biologici su piccola scala. Il progetto USMILE, finanziato dall’UE, impiegherà l’apprendimento automatico per migliorare la modellistica e la comprensione del sistema Terra. I ricercatori svilupperanno algoritmi di apprendimento automatico per ottimizzare i set di dati di osservazione della Terra che tengono traccia delle co-variazioni spazio-tempo, nonché parametrizzazioni basate sull’apprendimento automatico e sottomodelli per processi relativi a nuvole e superfici terrestri che da decenni ostacolano i progressi nella modellistica climatica. Inoltre, il team di ricerca individuerà e chiarirà modalità di variabilità climatica ed estremi multivariati e svelerà gli aspetti dinamici del sistema Terra con nuove tecniche di apprendimento profondo e scoperta causale.

Obiettivo

Earth system models are fundamental to understand climate change. Although they have improved significantly, considerable biases and uncertainties in their projections remain. Process parameterisations limit the models’ ability to simulate both global and regional Earth system responses, which are key for assessing climate change and its impacts on ecosystems and society. In recent years, the volume of data from high-resolution models and observations has substantially increased to petabyte scales. Concomitantly, the field of machine learning (ML) has quickly developed, promising breakthroughs in detecting and analysing non-linear relationships and patterns in large multivariate datasets. Yet, traditionally, physical modelling and ML have been often treated as two different worlds with opposite scientific paradigms (theory-driven versus data-driven). Thus, despite its great potential, ML has not yet been widely adopted for addressing the urgent need of improved understanding and modelling of the Earth system. USMILE will combine multi-disciplinary expertise in ML and process-based atmosphere and land modelling to completely rethink model development and evaluation. ML will further allow us to define novel observational constraints on Earth system feedbacks and climate projections. We will (1) develop ML algorithms to enhance Earth observation datasets accounting for spatio-temporal covariations, (2) deploy ML-based parameterisations and sub-models for clouds and land-surface processes that have hindered progress in climate modelling for decades, and (3) detect and understand modes of climate variability, multivariate extremes and uncover dynamical aspects of the Earth system with novel deep learning and causal inference techniques. USMILE will drive a paradigm shift in the current modelling of the Earth system towards a new data-driven physics-aware science and to an unprecedented reduction of uncertainties in projections.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SyG - Synergy grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2019-SyG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 2 977 864,00
Indirizzo
LINDER HOHE
51147 KOLN
Germania

Mostra sulla mappa

Regione
Nordrhein-Westfalen Köln Köln, Kreisfreie Stadt
Tipo di attività
Research Organisations
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 2 977 864,00

Beneficiari (4)

Il mio fascicolo 0 0