Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Understanding and Modelling the Earth System with Machine Learning

Opis projektu

Uczenie maszynowe w tworzeniu modeli klimatycznych

Modele systemu ziemskiego są podstawą zrozumienia i przewidywania zmian klimatycznych. Pomimo postępu w tej dziedzinie możliwość modelowego symulowania tak globalnych, jak i lokalnych odpowiedzi systemu ziemskiego jest ograniczona reprezentacją procesów fizycznych i biologicznych zachodzących w małej skali. Finansowany ze środków UE projekt USMILE zakłada wykorzystanie uczenia maszynowego w celu poprawy skuteczności modelowania i uzyskania lepszego zrozumienia systemu ziemskiego. Badacze opracują algorytmy uczenia maszynowego, które zostaną następnie wykorzystane do ulepszenia zestawów danych obserwacyjnych dotyczących Ziemi z uwzględnieniem kowariancji przestrzenno-czasowych oraz parametryzacji bazującej na uczeniu maszynowym, a także z wykorzystaniem modeli podrzędnych. Algorytmy te zostaną użyte do modelowania procesów zachodzących w chmurach i na powierzchni Ziemi, które, dotąd niemodelowane, od dziesięcioleci uniemożliwiały postęp w tworzeniu modeli klimatycznych. Ponadto pozwolą one, za pomocą nowatorskich technik uczenia głębokiego i zwykłego odkrywania przyczyn, wykryć i wyjaśnić tryby zmienności klimatu i wyznaczyć ekstrema funkcji wielowymiarowych, a także odkryć pewne aspekty dynamiki systemu ziemskiego.

Cel

Earth system models are fundamental to understand climate change. Although they have improved significantly, considerable biases and uncertainties in their projections remain. Process parameterisations limit the models’ ability to simulate both global and regional Earth system responses, which are key for assessing climate change and its impacts on ecosystems and society. In recent years, the volume of data from high-resolution models and observations has substantially increased to petabyte scales. Concomitantly, the field of machine learning (ML) has quickly developed, promising breakthroughs in detecting and analysing non-linear relationships and patterns in large multivariate datasets. Yet, traditionally, physical modelling and ML have been often treated as two different worlds with opposite scientific paradigms (theory-driven versus data-driven). Thus, despite its great potential, ML has not yet been widely adopted for addressing the urgent need of improved understanding and modelling of the Earth system. USMILE will combine multi-disciplinary expertise in ML and process-based atmosphere and land modelling to completely rethink model development and evaluation. ML will further allow us to define novel observational constraints on Earth system feedbacks and climate projections. We will (1) develop ML algorithms to enhance Earth observation datasets accounting for spatio-temporal covariations, (2) deploy ML-based parameterisations and sub-models for clouds and land-surface processes that have hindered progress in climate modelling for decades, and (3) detect and understand modes of climate variability, multivariate extremes and uncover dynamical aspects of the Earth system with novel deep learning and causal inference techniques. USMILE will drive a paradigm shift in the current modelling of the Earth system towards a new data-driven physics-aware science and to an unprecedented reduction of uncertainties in projections.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SyG - Synergy grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2019-SyG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 2 977 864,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 2 977 864,00

Beneficjenci (4)

Moja broszura 0 0