Project description
An augmented reality cloud platform to improve productivity and product quality
EU-funded ARtwin aims at developing an Augmented Reality (AR) cloud platform for improving productivity and product quality of the European industry and construction 4.0. Based on 5G connectivity, the AR cloud platform will enable collaborative AR experiences adapted to factory and construction site environments. AR experience will operate on a large scale by using 3D mapping and vision-based localisation services. A remote rendering service will enable the display of complex 3D content on low-resources AR devices. Finally, dedicated tools will allow for service deployment and orchestration on any cloud infrastructure. Three pilot use cases will be used for validation, while contribution to standardisation will aim at fostering the emergence of a sustainable and sovereign AR ecosystem in Europe.
Objective
Industry and construction 4.0 have high expectations of AR technologies in terms of productivity gains and quality improvement. Numerous proofs of concept demonstrate significant returns on investment but difficulties occur when it comes to large-scale deployment in operational dynamic environments exposed to variable lighting conditions. To overcome these limitations IT leaders (Google/Apple/Microsoft) investigate ARCloud technology in building a 3D map of the environment in the cloud which can be updated and shared by any AR device, allowing collaborative AR experiences and a more robust and accurate 3D registration. Unfortunately, the early-stage ARCloud implementations do not fully meet industry and construction 4.0 requirements and European players may face a lock-in situation if no sovereign solution is proposed to them.
ARtwin project aims to provide European Industry and Construction 4.0 with a ARCloud platform that meets their needs. This platform deployed on a private distant or/and edge cloud ensures the privacy of information and offers three key services: (i) an accurate and robust 3D registration for any AR device in large-scale and dynamic environments, allowing to present relevant information to workers at the right time and place, (ii) reduction of the difference between the physical and digital world by continuously maintaining the Digital Twin/BIM model based on vision sensors available in the factory or on construction sites, (iii) display of complex 3D augmentations on any AR device by remotely rendering them in the cloud with ultra-low-latency. The ARtwin platform and services will be validated in operational environments through two use cases in Industry 4.0 and a use case in Construction 4.0. The results of the format of the 3D map stored in the cloud will be submitted to standardization bodies to prevent lock-in situation with few vendors and encourage an ecosystem with a diverse range of solutions providers (small players, academics, etc.)
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- social sciences economics and business economics production economics productivity
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences biological sciences ecology ecosystems
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Data not available
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2018-20
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
55 133 KALAMARIA, THESSALONIKI
Greece
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.