European Commission logo
English English
CORDIS - EU research results
CORDIS

Guided Waves for Structural Health Monitoring

Project description

Better monitoring of engineering structures will benefit industry and citizens alike

Complex engineering structures such as bridges and highways deteriorate over time, often in ways that are not visible. Structural health monitoring (SHM) enables continuous evaluation to monitor changes and facilitate early detection of faults before expensive or even deadly damage occurs. Guided wave-based SHM detects abnormalities via changes in the propagation of guided ultrasonic waves through structures. Although promising, it is not widely used yet in industrial settings. The sensitivity of guided ultrasonic waves to many parameters is difficult to optimize due to the lack of suitable modelling software. GW4SHM is training new researchers in simulation and signal processing. The project plans to create customised tools for industry to facilitate uptake of guided ultrasonic wave-based SHM in numerous sectors.

Objective

Structural health monitoring (SHM) is essential to guarantee the safe and reliable operation of technical appliances and will be a key enabler to exploit emerging technologies such as remaining useful lifetime prognosis, condition-based maintenance, and digital twins. Particularly, SHM using ultrasonic guided waves is a promising approach for monitoring chemical plants, pipelines, transport systems and aeronautical structures. While substantial progress has been made in the development of SHM technology, current techniques are often realised only at lab-scale. Missing quantification of reliability hinders their practical application. The substantial effort for signal processing and of permanent transducer integration as well as the lack of efficient simulation tools to improve understanding of guided wave-structure interaction and to predict the capabilities of the system limit their widespread use. Training of PhD students specialised in SHM is limited and fragmented in Europe. The aim of this project is to combine for the first time efficient simulation and signal processing tools for SHM and to assess the reliability of the monitoring systems. The project will bring together partners from academia and industry and will train a new generation of researchers skilled in all aspects of SHM, enabling them to transform SHM research into practical applications. Focusing on aeronautics, petrochemistry and the automotive sector as initial pilot cases, we will develop SHM concept to assess the integrity of structures and create ready-to-use tools for industry and other SHM users. The strong collaboration between mathematicians, physicists and engineers aims to bring the capabilities and applicability of SHM methods to the next level. Our students will acquire multidisciplinary scientific expertise, complementary skills, and experience working in academia and industry. The outcome of the project will pave the way for integrating SHM into real-world engineering structures.

Coordinator

BUNDESANSTALT FUER MATERIALFORSCHUNG UND -PRUEFUNG
Net EU contribution
€ 505 576,80
Address
Unter den Eichen 87
12205 Berlin
Germany

See on map

Region
Berlin Berlin Berlin
Activity type
Research Organisations
Links
Total cost
€ 505 576,80

Participants (12)