Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Big dAta aNalYtics for radio Access Networks

CORDIS bietet Links zu öffentlichen Ergebnissen und Veröffentlichungen von HORIZONT-Projekten.

Links zu Ergebnissen und Veröffentlichungen von RP7-Projekten sowie Links zu einigen Typen spezifischer Ergebnisse wie Datensätzen und Software werden dynamisch von OpenAIRE abgerufen.

Leistungen

Recommendation to 3GPP on how to rank buildings for phased in-building mobile network deployment (öffnet in neuem Fenster)

The report will describe the output of Task 2.4: Rank buildings for phased in-building mobile network deployment. Details of T2.4 can be found in WP2 description.

Orchestrators for network slice management at the mobile edge (öffnet in neuem Fenster)

The report will describe the output of Task 3.1: Anticipatory edge network slices orchestration. Details of T3.1 can be found in WP3 description.

Mobile traffic demand predictors (öffnet in neuem Fenster)

The report will describe the output of Task 1.3: Predictors of mobile service demands. Details of T1.3 can be found in WP1 description.

Report on proactive optimization of indoor networks (to 3GPP, NGMN, Small Cell Forum, etc.) (öffnet in neuem Fenster)

The report will describe the output of Task 3.3: Proactive optimization of indoor networks. Details of T3.3 can be found in WP3 description.

Report on algorithms to localise indoor UEs (öffnet in neuem Fenster)

The report will describe the output of Task 2.2: Localise in-building UEs in 3D. Details of T2.2 can be found in WP2 description.

Report on in-building mobile traffic characterization (öffnet in neuem Fenster)

The report will describe the output of Task 2.3: Characterise in-building mobile traffic. Details of T2.3 can be found in WP2 description.

Report on mobile traffic demand multi-scale analytics (öffnet in neuem Fenster)

The report will describe the output of Task 12 Multiscale analytics for mobile service demands Details of T12 can be found in WP1 description

Advertising vacancies (öffnet in neuem Fenster)

The ESR posts will have been advertised

Report on mobile traffic demand baseline analytics (öffnet in neuem Fenster)

The report will describe the output of Task 11 Basic analytics for regular and irregular structures in macroscopic mobile service demands Details of T11 can be found in WP1 description

Report on joint outdoor-indoor optimization based on BDA (to 3GPP, NGMN, Small Cell Forum, etc.) (öffnet in neuem Fenster)

The report will describe the output of Task 3.2: Optimize and coordinate outdoor and indoor mobile networks. Details of T3.2 can be found in WP3 description.

Report on algorithms to geo-localise traffic to buildings (öffnet in neuem Fenster)

The report will describe the output of Task 21 Develop algorithms to geolocate in which building a UE is Details of T21 can be found in WP2 description

Summer school: Data-driven 5G RANs (öffnet in neuem Fenster)

Delivery of Summer school: Data-driven 5G RANsThe specific summer school on data-driven 5G RAN will be organized by CNR. This 3-day training school will deal with the new models applied for the 5G characterization, including channel, mobility, radio resource management and network traffic modelling, as well as addressing the visualization of dynamic results. Experts in the field from partners in the network will present relevant research results. The summer school will also be an occasion for ESRs and other PhD candidates or researchers to present their on-going research activities and obtain feedback from senior attendees.

Scientific and technological workshop (öffnet in neuem Fenster)

Delivery of Scientific and technological workshop.A scientific and technological workshop organized by RPN and UCAM, and hosted by UCAM. The 2-day event will be open to the research community. Each ESR will write a scientific paper and present the current status of their work. Electronic copies of all papers and tutorial materials and video records of invited talks will be made available to the participants. ESRs will be directly involved in the organization of the event.

Complementary skills training workshops (öffnet in neuem Fenster)

Delivery of complementary skills training workshops.CC1. Intellectual propertyCC2. Publication strategiesCC3. Public engagement skillsCC4. Management skillsCC5. CommunicationCC6. Knowledge transfer and commercial exploitation of results CC7. Grant proposal writing and research policyCC8. Entrepreneurship

Summer school: Sci. and technological training (öffnet in neuem Fenster)

Delivery of Summer school - Sci. and technological trainingTC1. Mobile network data processing, modelling and analysisTC2. Machine LearningTC3. Selected Topics on Spatiotemporal System Analysis and Data Mining TC4. Indoor localisationTC5. Modelling & Optimization in Wireless NetworksTC6. Key Enabling Technologies for 5G

BANYAN training school (öffnet in neuem Fenster)

A BANYAN training school should have been organised by Month 35.

Veröffentlichungen

Fast Detection of Cyberattacks on the Metaverse through User-plane Inference (öffnet in neuem Fenster)

Autoren: Bütün, Beyza; Akem, Aristide Tanyi-Jong; Gucciardo, Michele; Fiore, Marco
Veröffentlicht in: Crossref, Ausgabe 1, 2023
Herausgeber: 2023 IEEE International Conference on Metaverse Computing, Networking and Applications
DOI: 10.1109/metacom57706.2023.00067

Encrypted Traffic Classification at Line Rate in Programmable Switches with Machine Learning (öffnet in neuem Fenster)

Autoren: Aristide Tanyi-Jong Akem, Guillaume Fraysse, Marco Fiore
Veröffentlicht in: NOMS 2024-2024 IEEE Network Operations and Management Symposium, Ausgabe 8, 2024, Seite(n) 1-9
Herausgeber: IEEE
DOI: 10.1109/noms59830.2024.10575394

Showcasing In-Switch Machine Learning Inference (öffnet in neuem Fenster)

Autoren: Akem Aritside; Bütün, Beyza; Gucciardo, Michele; Fiore, Marco
Veröffentlicht in: Crossref, Ausgabe 3, 2022
Herausgeber: 1st International Workshop on Native Network Intelligence
DOI: 10.1109/netsoft57336.2023.10175464

Henna (öffnet in neuem Fenster)

Autoren: Aristide Tanyi-Jong Akem, Beyza Bütün, Michele Gucciardo, Marco Fiore
Veröffentlicht in: Proceedings of the 1st International Workshop on Native Network Intelligence, 2023
Herausgeber: ACM
DOI: 10.1145/3565009.3569520

Impact of Public Protests on Mobile Networks (öffnet in neuem Fenster)

Autoren: André F. Zanella, Orlando E. Martínez-Durive, Sachit Mishra, Diego Madariaga, Marco Fiore
Veröffentlicht in: IEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2024, Seite(n) 1-2
Herausgeber: IEEE
DOI: 10.1109/infocomwkshps61880.2024.10620747

Characterizing 5G Adoption and its Impact on Network Traffic and Mobile Service Consumption (öffnet in neuem Fenster)

Autoren: Sachit Mishra, André F. Zanella, Orlando E. Martínez-Durive, Diego Madariaga, Cezary Ziemlicki, Marco Fiore
Veröffentlicht in: IEEE INFOCOM 2024 - IEEE Conference on Computer Communications, 2024, Seite(n) 1531-1540
Herausgeber: IEEE
DOI: 10.1109/infocom52122.2024.10621344

Demonstrating Flow-Level In-Switch Inference (öffnet in neuem Fenster)

Autoren: Gucciardo, Michele; Akem, Aristide Tanyi-Jong; Bütün, Beyza; Fiore, Marco
Veröffentlicht in: Crossref, Ausgabe 2, 2023
Herausgeber: INFOCOM 2023
DOI: 10.1109/infocomwkshps57453.2023.10225967

IRDM: A generative diffusion model for indoor radio map interpolation (öffnet in neuem Fenster)

Autoren: Kehai Q, Stefanos B, lan W, Hui S, Kan L, Jie Z
Veröffentlicht in: 2023
Herausgeber: IEEE Global Communications Conference 2023
DOI: 10.1109/globecom54140.2023.10436970

Characterizing and Modeling Session-Level Mobile Traffic Demands from Large-Scale Measurements (öffnet in neuem Fenster)

Autoren: André Felipe Zanella; Antonio Bazco-Nogueras; Cezary Ziemlicki; Marco Fiore
Veröffentlicht in: Crossref, Ausgabe 2, 2023
Herausgeber: Internet Measurement Conference. 2023
DOI: 10.1145/3618257.3624825

Characterizing Mobile Service Demands at Indoor Cellular Networks (öffnet in neuem Fenster)

Autoren: Stefanos B, Andre F.Z, Stefania R, Cezary Z, Zbigniew S, lan W, Jie Z, Marco F
Veröffentlicht in: 2023
Herausgeber: IMC '23: ACM Internet Measurement Conference
DOI: 10.1145/3618257.3624807

Stochastic Evaluation of Indoor Wireless Network Performance with Data-Driven Propagation Models (öffnet in neuem Fenster)

Autoren: Bakirtzis, Stefanos; Wassell, Ian; Fiore, Marco; Zhang, Jie
Veröffentlicht in: Crossref, Ausgabe 5, 2022
Herausgeber: 2022 Globecom
DOI: 10.1109/globecom48099.2022.10001717

Towards Data-Driven Management of Mobile Networks through User Plane Inference (öffnet in neuem Fenster)

Autoren: Aristide Tanyi-Jong Akem, Marco Fiore
Veröffentlicht in: NOMS 2024-2024 IEEE Network Operations and Management Symposium, Ausgabe 28, 2024, Seite(n) 1-4
Herausgeber: IEEE
DOI: 10.1109/noms59830.2024.10575655

DeepRay: Deep Learning Meets Ray-Tracing (öffnet in neuem Fenster)

Autoren: Bakirtzis, S; Qiu, K; Zhang, J; Wassell, I
Veröffentlicht in: Crossref, Ausgabe 10, 2022
Herausgeber: 16th European Conference on Antennas and Propagation
DOI: 10.23919/eucap53622.2022.9769203

Flowrest: Practical Flow-Level Inference in Programmable Switches with Random Forests (öffnet in neuem Fenster)

Autoren: Akem Aristide Tanyi-Jong; Michele Gucciardo; Marco Fiore
Veröffentlicht in: Crossref, Ausgabe 6, 2023
Herausgeber: INFOCOM 2023
DOI: 10.1109/infocom53939.2023.10229100

Deep Learning-Based Path Loss Prediction For Outdoor Wireless Communication Systems (öffnet in neuem Fenster)

Autoren: Kehai Q, Stefanos B, Hui S, lan W, Jie Z,
Veröffentlicht in: 2023
Herausgeber: IEEE International Conference on Acoustics
DOI: 10.1109/icassp49357.2023.10095501

Ray-Tracing Meets Deep Learning

Autoren: Stefanos Bakirtzis, Kehai Qiu, Jie Zhang, Ian Wassell
Veröffentlicht in: 2022
Herausgeber: EUCAP

Impact of Later-Stages COVID-19 Response Measures on Spatiotemporal Mobile Service Usage (öffnet in neuem Fenster)

Autoren: Andre Felipe Zanella, Orlando E. Martinez-Durive, Sachit Mishra, Zbigniew Smoreda, Marco Fiore
Veröffentlicht in: IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, 2022, Seite(n) 970-979
Herausgeber: IEEE
DOI: 10.1109/infocom48880.2022.9796888

Spatial and Temporal Exploratory Factor Analysis of Urban Mobile Data Traffic (öffnet in neuem Fenster)

Autoren: Angelo Furno; André Felipe Zanella; Razvan Stanica; Marco Fiore
Veröffentlicht in: Crossref, Ausgabe 1, 2024, ISSN 2948-135X
Herausgeber: Data Science for Transportation
DOI: 10.1007/s42421-024-00089-y

Deep-Learning-Based Multivariate Time-Series Classification for Indoor/Outdoor Detection (öffnet in neuem Fenster)

Autoren: Bakirtzis, S; Qiu, K; Wassell, I; Fiore, M; Zhang, J
Veröffentlicht in: instname:, Ausgabe 4, 2022, ISSN 2327-4662
Herausgeber: Institute of Electrical and Electronics Engineers Inc.
DOI: 10.1109/jiot.2022.3190555

Forecasting Network Traffic: A Survey and Tutorial With Open-Source Comparative Evaluation (öffnet in neuem Fenster)

Autoren: Ferreira; Gabriel O.; Ravazzi; Chiara; Dabbene; Fabrizio; Calafiore; Giuseppe C.; Fiore; Marco
Veröffentlicht in: info:cnr-pdr/source/autori:Ferreira, Gabriel O. and Ravazzi, Chiara and Dabbene, Fabrizio and Calafiore, Giuseppe C. and Fiore, Marco/titolo:Forecasting Network Traffic: A Survey and Tutorial With Open-Source Comparative Evaluation/doi:10.1109%2FACCESS.2023.3236261/rivista:IEEE access/anno:2023/pagina_da:6018/pagina_a:6044/intervallo_pagine:6018–6044/volume:11, Ausgabe 1, 2023, ISSN 2169-3536
Herausgeber: Institute of Electrical and Electronics Engineers Inc.
DOI: 10.1109/access.2023.3236261

A Joint Optimization Approach for Power-Efficient Heterogeneous OFDMA Radio Access Networks (öffnet in neuem Fenster)

Autoren: Gabriel O. Ferreira, André F. Zanella, Stefanos Bakirtzis, Chiara Ravazzi, Fabrizio Dabbene, Giuseppe C. Calafiore, Ian Wassell, Jie Zhang, Marco Fiore
Veröffentlicht in: IEEE Journal on Selected Areas in Communications, 2024, Seite(n) 1-1, ISSN 0733-8716
Herausgeber: Institute of Electrical and Electronics Engineers
DOI: 10.1109/jsac.2024.3431524

EM DeepRay: An Expedient, Generalizable, and Realistic Data-Driven Indoor Propagation Model (öffnet in neuem Fenster)

Autoren: Bakirtzis, S; Chen, J; Qiu, K; Zhang, J; Wassell, I
Veröffentlicht in: Crossref, Ausgabe 4, 2022, ISSN 1558-2221
Herausgeber: IEEE Transactions on Antennas and Propagation
DOI: 10.1109/tap.2022.3172221

Expedient AI-assisted Indoor Wireless Network Planning with Data-Driven Propagation Models (öffnet in neuem Fenster)

Autoren: Jie Zhang; Ian Wassell; Marco Fiore; Stefanos Bakirtzis
Veröffentlicht in: Crossref, Ausgabe 3, 2024
Herausgeber: IEEE Networks
DOI: 10.36227/techrxiv.22682650.v1

Pseudo Ray-Tracing: Deep Leaning Assisted Outdoor mm-Wave Path Loss Prediction (öffnet in neuem Fenster)

Autoren: Qiu, K; Bakirtzis, S; Song, H; Zhang, J; Wassell, I
Veröffentlicht in: Crossref, Ausgabe 8, 2022
Herausgeber: IEEE Wireless Communications Letters
DOI: 10.1109/lwc.2022.3175091

Suche nach OpenAIRE-Daten ...

Bei der Suche nach OpenAIRE-Daten ist ein Fehler aufgetreten

Es liegen keine Ergebnisse vor

Mein Booklet 0 0