Project description
A validation strategy for blade tip timing technology when measuring blade health
A major objective when designing a rotating component is ensuring that excessive stress doesn’t cause rotor blades to fail prematurely. Current methods are expensive and often unreliable in a gas turbine environment. Since it addresses cost and timescale issues, and produces data that can support certification of compressor blades, blade tip timing (BTT) is rapidly becoming a candidate technology. However, recent changes in the industry have left BTT without an agreeable global validation strategy. To solve this problem, the EU-funded Batista project aims to provide a complete validation strategy for the use of BTT in aero compressors by performing a full test under controlled conditions and validating the results. The project will help prevent fatigue-related component failure.
Objective
One of the main objectives in the design of a rotating component is to obtain the vibrational response to ensure that the mechanical loads encountered in operation do not result in excessive stress that can cause fatigue failures. Today this is achieved through modeling, laboratory tests and engine testing with the most common method being the use of strain gauges, the application of which are expensive and often unreliable in a gas turbine environment. There are a number of reasons for requiring a new technology and most hinge on both the lead-time and cost of application. Today’s gas turbine development programs are up to 50% shorter than those of a decade ago and the machines operate at increasingly higher speeds and temperatures. Instrumentation failure is high, as is the mortality of a strain gauge in such an environment. Blade tip timing (BTT) is quickly becoming a candidate technology as it addresses the cost and timescale issues and has been shown to produce data that is suitable to support certification of compressor blades. The participants in this consortium have provided BTT technique validation evidence to both EASA and the FAA on a number of occasions for specific configurations of the BTT measurement technology. This work was started in The USA through the ISA 107.1 program and this projects participants were instrumental in leading this effort. Due to changes in the industry over the last 5 years, the committee has all but disbanded leaving BTT technology without an agreed global validation strategy. This consortium has access to the validation of the BTT methods through its experience gained in the aerospace industry and the partners continue to produce new methods to support the technology. This project provides a complete validation strategy for the use of BTT in aero compressors by performing a full test on a representative compressor stage under controlled conditions and validating the results against an FE model, strain gauges and LVD.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aeronautical engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.4.5.5. - ITD Engines
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
CS2-RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-CS2-CFP09-2018-02
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
DE72 3UX Derby
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.