Project description DEENESFRITPL A window on ionising radiation will shed light on our cosmos and foster safe space travel The Universe is full of radiation, energy emitted as rays, electromagnetic waves, and particles. Space radiation differs from the radiation we experience on Earth. It consists of three main types of high-energy (ionising) radiation: particles trapped in the Earth’s magnetic field, particles during solar flares, and cosmic rays originating outside our solar system. High-energy radiation is dangerous because we cannot easily shield ourselves from it. It moves through substances, ionising atoms in the surrounding material. The EU-funded PAN project is building a demonstrator of a penetrating particle analyser to help us understand these particles in deep space. Insight will shed light on violent solar events, cosmic rays, and space weather, enhancing basic understanding and the future safety of humans in space. Show the project objective Hide the project objective Objective The goal of the project is to build a demonstrator for the Penetrating Particle Analyser (PAN), an innovative energetic particle detection technology to precisely measure and monitor the flux and composition of highly penetrating particles (> ~100 MeV/nucleon) in deep space. The application of PAN is broad and multidisciplinary, covering cosmic ray physics, solar physics, space weather and space travel. PAN will fill an observation gap of galactic cosmic rays in the 100 MeV/nucleon - GeV/nucleon region, which is crucial for improving our still limited understanding of the origin of cosmic rays, and their propagation through the Galaxy and the Solar system. It will provide precise information of the spectrum, composition and timing of energetic particle originated from the Sun, which is essential for studying the physical process of solar activities, in particular the rare but violent solar events that produce intensive flux of energetic particles. The precise measurement and monitoring of the penetrating particles is also a unique contribution to space weather studies, in particular to the development of predictive space weather models in a multi-wavelength and multi-messenger approach, using observations both space and ground based. As indicated by the terminology, penetrating particles cannot be shielded effectively. PAN can monitor the flux and composition of these particles precisely and continuously, thus providing real-time radiation hazard warning and long term radiation health risk for human space travelers. Once developed, PAN can become a standard device for deep space human bases and for deep space exploration and commercial spacecrafts, or as part of a space weather advance warning system permanently deployed in space. It can also be implemented on science missions to perform ground-breaking measurements for cosmic-ray physics, solar physics, planetary science and space radiation dosimetry. Fields of science natural sciencesphysical sciencesastronomyspace explorationengineering and technologymechanical engineeringvehicle engineeringaerospace engineeringastronautical engineeringspacecraftnatural sciencesphysical sciencesastronomygalactic astronomysolar physics Keywords Solar energetic particles cosmic rays space environment Programme(s) H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET) Main Programme H2020-EU.1.2.1. - FET Open Topic(s) FETOPEN-01-2018-2019-2020 - FET-Open Challenging Current Thinking Call for proposal H2020-FETOPEN-2018-2020 See other projects for this call Sub call H2020-FETOPEN-2018-2019-2020-01 Funding Scheme RIA - Research and Innovation action Coordinator UNIVERSITE DE GENEVE Net EU contribution € 1 312 500,00 Address Rue du general dufour 24 1211 Geneve Switzerland See on map Region Schweiz/Suisse/Svizzera Région lémanique Genève Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Participants (3) Sort alphabetically Sort by Net EU contribution Expand all Collapse all ISTITUTO NAZIONALE DI FISICA NUCLEARE Italy Net EU contribution € 687 500,00 Address Via enrico fermi 54 00044 Frascati See on map Region Centro (IT) Lazio Roma Activity type Research Organisations Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Third-party Legal entity other than a subcontractor which is affiliated or legally linked to a participant. The entity carries out work under the conditions laid down in the Grant Agreement, supplies goods or provides services for the action, but did not sign the Grant Agreement. A third party abides by the rules applicable to its related participant under the Grant Agreement with regard to eligibility of costs and control of expenditure. UNIVERSITA DEGLI STUDI DI PERUGIA Italy Net EU contribution € 125 000,00 Address Piazza dell universita 1 06123 Perugia See on map Region Centro (IT) Umbria Perugia Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 CESKE VYSOKE UCENI TECHNICKE V PRAZE Czechia Net EU contribution € 512 500,00 Address Jugoslavskych partyzanu 1580/3 160 00 Praha See on map Region Česko Praha Hlavní město Praha Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00