Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Photon Emitting Gated Arrays for Scalable On-chip quantum Systems

Description du projet

Contrôler la génération de points quantiques dans les matériaux 2D

Les émetteurs de lumière quantiques, ou points quantiques, ont suscité beaucoup d’intérêt pour de nombreuses applications, et notamment pour la communication quantique. Toutefois, leur présence aléatoire dans les matériaux semi-conducteurs composés conventionnels III-V complique la production de réseaux quantiques rapprochés qui conservent des sources de lumière quantiques de haute qualité. Le projet PEGASOS, financé par l’UE, entend créer des réseaux à grande échelle de ces émetteurs quantiques dans des semi-conducteurs moins conventionnels: des matériaux 2D de faible épaisseur atomique. La technique utilisée permettra de produire à la demande de grandes quantités d’émetteurs monophotoniques robustes. La génération déterministe de sources quantiques créera de nouvelles opportunités pour des structures hybrides de fonctions photoniques et électroniques superposées. Les matrices quantiques seront entièrement évolutives et compatibles avec la fabrication de puces de silicium.

Objectif

Single photons play in important part in the development of quantum technologies, particularly in the fields of communication and networks. There are many potential candidates of single-photon sources with varying degrees of quality and efficiency, and there is a collective push towards catapulting solid-state quantum light sources into real applications needed for the development of quantum technologies. To that end, the current ERC Consolidator Grant (from which this PoC proposal draws highly) focuses on semiconductor spin-photon interfaces and aims to develop them where milestones such as distant spin qubit entanglement can be demonstrated. While the majority of the deliverables have been reached, the key challenge of scalability still causes concern for conventional III-V-based semiconductor quantum dots. Conventional semiconductor quantum dots individually have stellar optical properties, but their random occurrence and their requirement to be embedded deep inside the host semiconductor makes it difficult to devise large-scale on-chip quantum devices with integrated photonic circuitry beyond a few quantum dots. During the ERC Consolidator Grant we have invented a completely new way to create quantum dots in other, less conventional semiconductors: atomically thin 2d materials. With this technique we are able to create very large quantum dot arrays with unprecedented location accuracy and comfortably in the thousands and have demonstrated all-electrical triggering of single photons. The invention is patented and there is a very recent spin-off company aiming to commercialise this system for high-yield large-band with quantum light sources. The immediate application areas are space QKD and quantum random number generation.

Institution d’accueil

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contribution nette de l'UE
€ 150 000,00
Adresse
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Royaume-Uni

Voir sur la carte

Région
East of England East Anglia Cambridgeshire CC
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
Aucune donnée

Bénéficiaires (1)