Project description
Studying geomorphic and sedimentary responses to climate change
What lies beneath our feet is a mystery. Geoscientists are studying the Earth’s surface to determine how periodic changes in climate affect Earth-surface processes such as erosion and sedimentation. This is the aim of the EU-funded GyroSCoPe project. Specifically, it will investigate erosion histories in mountainous regions at the Mid-Pleistocene Transition (MPT). It will also research alluvial fans and terraces in the context of a newly developed numerical model. The project will use the data to interpret the impact of a change in the dominant forcing period on hillslope erosion rates, track how this sediment propagates across landscapes through alluvial rivers and thus provide a wealth of data that can be used to calibrate landscape-evolution and alluvial-channel models.
Objective
Under the threat of ongoing global warming, predictions concerning how much temperatures will rise and precipitation will change are undergoing continual improvement, but the spatial distribution of predicted changes and their impacts on Earth-surface processes, notably erosion and sedimentation, are subject to great uncertainty. Such processes have immediate consequences for people living along alluvial or transport-limited rivers, which constitute the majority of rivers on Earth, yet their evolution in response to external forcing conditions is not well understood. In the GyroSCoPe project, I will address these knowledge gaps through an innovative approach that focuses on how periodic changes in climate affect Earth-surface processes. Specifically, because the dominant forcing frequencies have changed through time (notably at the Mid-Pleistocene Transition, MPT), and the frequency of each forcing period likely dictates how far downstream in alluvial channels impacts are felt, it should be possible to decipher the impacts of individual periodic forcings in the geologic record. To do this, I will apply novel tools to decipher erosion histories in mountainous regions, specifically at the MPT, and I will investigate alluvial fans and terraces in the context of a new numerical model developed by my group. These data will allow me to interpret the impact of a change in the dominant forcing period on hillslope erosion rates, track how this sediment propagates across landscapes through alluvial rivers, and thus provide a wealth of data that can be used to calibrate landscape-evolution and alluvial-channel models. This improved understanding of the fundamental impacts of the magnitude and frequency of periodic forcing on erosion rates and sediment transport through rivers will in turn enable (1) the use of terraces and fans as paleoclimate proxies, which can be used to test climate models and (2) predicting Earth-surface responses to ongoing and future climate changes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesearth and related environmental sciencesgeologysedimentology
- humanitieshistory and archaeologyhistory
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Programme(s)
Funding Scheme
ERC-COG - Consolidator GrantHost institution
14473 POTSDAM
Germany