Description du projet
De nouveaux algorithmes puissants réduiront l’impact du hasard sur la prévisibilité
Si toutes les conséquences de la vie étaient entièrement déterminées par leurs apports et les conditions de démarrage, les choses seraient beaucoup plus simples. Heureusement, la compréhension des situations et la prévision des résultats lorsque certains aléas inhérents jouent un rôle ont été simplifiées par les modèles stochastiques. Alors que la puissance de calcul augmente avec les données disponibles pour les entrées dans de nombreuses disciplines, des algorithmes plus puissants, robustes et précis sont très attendus. Le projet ForM-SMArt, financé par l’UE, s’attaque à cet important défi en développant des approches algorithmiques pour des méthodes formelles d’analyse des modèles stochastiques qui permettront d’améliorer l’utilité des outils automatisés. Les résultats apporteront un vent de fraîcheur sur des domaines allant des mathématiques et de l’ingénierie de base et appliquées à la biologie évolutive et à la finance.
Objectif
The formal analysis of stochastic models plays an important role in different disciplines of science, e.g. probability theory, evolutionary stochastic processes in biology. In computer science, such models arise in formal verification of probabilistic systems, analysis of probabilistic programs, analysis of game-theoretic interactions with stochastic aspects, reasoning about randomized protocols, etc. At the heart of the analysis methods are algorithmic approaches that lead to automated tools. Despite significant and impressive research achievements over the decades, many fundamental algorithmic problems related to formal analysis of stochastic models remain open. Moreover, the emergence of new technologies and the need to build more complex systems, require faster and scalable algorithmic solutions. The overarching theme of the project is algorithmic approaches for formal methods to analyse stochastic models. Our main research aims are:
(1) Finite-state models: Develop faster explicit and implicit algorithms, and establish conditional lower bounds, for finite-state probabilistic systems.
(2) Probabilistic programs: Develop efficient algorithmic approaches and practical techniques (e.g. compositional and abstraction techniques) for the analysis of probabilistic programs.
(3) Stochastic and evolutionary games: Develop algorithmic approaches related to stochastic games and evolutionary games, which bring together the two different fields of game theory.
(4) Application domains: Explore new application areas in diverse domains to demonstrate the effectiveness of the new algorithms developed.
The projects success will significantly enrich formal methods for analysis of stochastic models that are crucial in the development of robust and correct systems. Since stochastic models are foundational in several disciplines, the new algorithmic solutions are expected to lead to automated tools beneficial to other disciplines.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-COG - Consolidator Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2019-COG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
3400 KLOSTERNEUBURG
Autriche
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.