European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Tissue-engineering the tumour microenvironment to improve treatment of pancreatic cancer

Description du projet

Des modèles in vitro de cancer du pancréas issus de patients

Le cancer du pancréas étant associé à un pronostic extrêmement sombre, il est indispensable de développer de nouvelles thérapies. Il convient donc de disposer de modèles spécifiques aux patients, capables de reproduire la biologie de la tumeur ainsi que les interactions entre le cancer et les cellules qui soutiennent son développement. Pour relever ce défi, le projet CHIPIN, financé par l’UE, propose de développer des modèles de cancer en 3D en recourant à l’ingénierie tissulaire et à la bio-impression. Les plateformes construites seront constituées d’hydrogels, de molécules de la matrice extracellulaire et de cellules dérivées de patients: elles reproduiront les caractéristiques biomécaniques du microenvironnement des tumeurs pancréatiques. Cette nouvelle approche offrira une plateforme pertinente sur le plan clinique pour sélectionner de nouvelles thérapies.

Objectif

My vision is to address a clinical problem with a novel and transformative approach. Using my unique expertise in cell biology, tissue engineering and translational research I will design technology platforms to test new treatments for human pancreatic cancer.

Pancreatic tumours are cancers of unmet medical need with 85% of patients dying within 9 months of diagnosis. To find better therapies, we need patient-specific models that mimic the biology of tumour tissues and target interactions between malignant and non-malignant cells. Biomimetic tissue engineering is a powerful approach to generate 3D cancer models, however, only a few scientists use these technologies. Most 3D cultures of human cells include reconstituted matrices that originate from murine tumours containing undefined amounts of extracellular matrix and growth factors. There is no tissue-engineered 3D model that allows control over patient-specific and biomechanical characteristics of the pancreatic tumour microenvironment.

I hypothesise that 3D approaches that replicate the native tissue composition and biomechanical properties will behave like real tumours to provide clinically predictive platforms and to test novel treatments that target both malignant and non-malignant cells.

To test my hypothesis, I will:
•3D-print matrix and cellular elements of the microenvironment of human pancreatic tumours
•Develop a cancer-on-a-chip model of liver metastasis
•Compare the crosstalk of malignant and other microenvironment components with the human disease
•Validate my new platforms with treatments in clinical trials and test novel combination treatments that slow down or reduce tumour growth.

In a multidisciplinary project, I will use:
•3D printing to build platforms composed of hydrogels, fibrous scaffolds and patient-derived cells
•Extracellular matrix molecules for chemical crosslinking into hydrogels
•Cancer-on-a-chip models to study tumour metastasis
•Imaging, biomechanical and multi-omics analyses.

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

LEIBNIZ-INSTITUT FUR POLYMERFORSCHUNG DRESDEN EV
Contribution nette de l'UE
€ 2 000 000,00
Adresse
HOHE STRASSE 6
01069 Dresden
Allemagne

Voir sur la carte

Région
Sachsen Dresden Dresden, Kreisfreie Stadt
Type d’activité
Research Organisations
Liens
Coût total
€ 2 000 000,00

Bénéficiaires (1)