Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Safe data-driven control for human-centric systems

Project description

Making the digital experience more human

It is important for advances in technology to support human activities and interactions in the areas of healthcare, mobility and infrastructure systems. For instance, making healthcare more human requires digital interfaces to allow for more human interactions with the system. This is the goal of human-centric systems in which the human is both an element of the control system and a design criterion. The EU-funded CO-MAN project will develop a framework for user-adaptive data-driven control with performance guarantees. The biggest challenge will be to merge probabilistic non-parametric modelling techniques from statistical learning theory with novel risk-aware control methodologies while including active user modelling. The game changer is the current push towards reliable machine learning with novel results on theoretical bounds for learning behaviour.

Objective

Many control systems of the future involve a tight interaction or even symbiosis with the human user. High-impact application domains of human-centric systems include healthcare, mobility, and infrastructure systems. In human-centric systems the human is both, an element of the control system, and a design criterion with individual requirements that need to be satisfied. Safety - despite the high uncertainty of human behavior - and maximization of individual user experience are the primary objectives for control design in human-centric systems. The visionary goal of CO-MAN is to contribute to the fundamental understanding and principled approach to the control of smart human-centric systems. We will develop a novel framework for user-adaptive data-driven control with performance guarantees in order to address the scientific challenges of high uncertainty and individual user requirements. The grand challenge is to unify the two previously separate paradigms of model-based control with its rigorous guarantees but limited modeling base and machine learning algorithms with its flexible modeling concepts but lack of guarantees. The breakthrough enabling idea is to merge probabilistic non-parametric modeling techniques from statistical learning theory with novel risk-aware control methodologies while including active user modeling. The game changer is the current push towards reliable machine learning with novel results on theoretical bounds for learning behavior. Because of favorable properties we will focus on Gaussian Processes to model user behavior and preferences and translate the naturally quantified model uncertainty into closed loop behavior guarantees through a confidence-driven human-interactive control approach. The PI is in a perfect position to achieve the envisioned goal of super-individualized data-driven control with performance guarantees given the highly visible preliminary results and leadership in the area of human-cyber-physical systems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-COG

See all projects funded under this call

Host institution

TECHNISCHE UNIVERSITAET MUENCHEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 999 975,00
Address
Arcisstrasse 21
80333 Muenchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 999 975,00

Beneficiaries (1)

My booklet 0 0