European Commission logo
English English
CORDIS - EU research results

Innovative Tooling, End-Effector Development and Industrialisation for Welding of Thermoplastic Components

Project description

New welding tool for Europe’s aircraft assembly line

The joining of thermoplastic composites (TPCs) is an important step in the manufacturing of aerospace TPC structures. The next generation of passenger aircraft will make extensive use of TPCs, which are lighter in weight and can be joined by welding. Not only does this eliminate the need for fasteners but also improves reliability and reduces assembly costs. To leverage the full potential of TPCs in aviation, the EU-funded TCTOOL project will develop new end-effectors for the jigless assembly of TPC fuselage structures. It will also develop new adaptive tooling for the welding of thermoplastic fuselage skin to stringers and frames. The aim is to achieve cost-effective zero-defects assembly for Europe’s aircraft assembly lines.


The next generation of large passenger aircraft will make extensive use of thermoplastic composites which could replace thermoset composites and metals in many areas of aircraft construction. Thermoplastic composites can be lighter in weight even than thermoset composites, but the key advantage is that they can be joined together using welding processes. This has the potential to eliminate many of the hundreds of thousands of fasteners in an aircraft, improving reliability and reducing assembly costs by over 60%.

To take full advantage of thermoplastic composites weldability will require the development of innovative new approaches to tooling and automation to eliminate or reduce fixed tooling costs which can account for more than one third of non-recurring costs.

This project will develop innovative new end-effectors for jigless assembly of thermoplastic composite fuselage structures and new adaptive tooling for the welding of thermoplastic fuselage skin to stringers and frames. This will allow highly automated assembly of these complex structures with tooling that can be re-configured digitally and re-used. The project will also deliver simulation tools and perform manufacturing simulations to quantify variations in assembly, risk of defects, and optimise the process to achieve cost-effective zero-defects assembly.

This €1050k project will be led by TWI a major industrial research organisation with world-leading expertise in composites joining and large equipment design, FADA-CATEC Center for Advanced Aerospace Technologies with expertise in robotic assembly and aerospace technology, London South Bank University – developers of innovative robotic and end-effector solutions, Brunel University – experts in thermoplastic composites welding and AcroFlight – experts in virtual engineering and simulation.


Net EU contribution
€ 357 943,23
CB21 6AL Cambridge
United Kingdom

See on map

East of England East Anglia Cambridgeshire CC
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Total cost
€ 357 943,24

Participants (4)