Project description
Advancing X-ray imaging data analysis
X-ray imaging is a well-established technique with a wide range of applications in medicine, materials science and archaeology. Existing methods for X-ray image analysis fail to capture important phenomena such as scattering signals, which may hold valuable structural information on the investigated sample. The EU-funded S-BaXIT project will adapt X-ray imaging data acquisition with emphasis on tomography scattering and redundancy to improve existing imaging analysis techniques. The key objective is to reveal complementary features, which was not possible before, improve the power of X-ray imaging and further expand its applications.
Objective
This research project will create new ways of doing X-ray imaging based on scattering and data redundancy. Many X-ray imaging techniques are based on simple models that fail to capture important phenomena, such as small-angle or incoherent scattering. Far from being a nuisance, scattering signals often hold valuable information on the finest structure of the investigated sample. For instance X-ray scattering can reveal fibre orientations in a carbon-fibre composite or the early formation of cancerous tissues in mammography. To exploit scattering, adapting data acquisition is often necessary. Collecting diverse but partly redundant datasets is a powerful way to encode information so that it can be subsequently decoded with appropriate software. For this purpose one can, for instance, displace the sample in a non-uniform illumination profile. Another often overlooked source of redundancy is tomography itself, where projection images from different view angles are strongly correlated. The central achievements of this research project will be the introduction of a new formalism that offers a complete picture of scattering in the context of imaging, and the development of techniques that exploit explicitly measurement diversity - in particular tomographic redundancy - to extract complementary information. These new paradigms will be implemented and demonstrated with a range of X-ray imaging techniques: ptychography for high-resolution imaging, speckle-based imaging for lab-based phase-contrast and dark-field, and conventional transmission microCT, for scattering signal extraction. The expected results of this research project will leave a lasting impact on the research community. The full exploitation of data redundancy and scattering-aware models will create imaging modalities that can reveal features that could not be seen before for a broad range of applications, from advanced materials to fragile biological samples, to valuable heritage and archaeological artefacts.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
34127 Trieste
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.